Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

mlx Model (loglikelihood & generate_until) #1902

Open
wants to merge 72 commits into
base: main
Choose a base branch
from

Conversation

chimezie
Copy link

@chimezie chimezie commented May 29, 2024

This adds a new model type for mlx models. In particular, it implements the loglikelihood and generate_until interfaces. Works with the current versions of mlx and mlx-lm

The new model type is mlx, so the harness can be run this way to evaluate against a local mlx model:

lm_eval --model mlx --model_args model=.. model name or path ..   --tasks medqa_4options 

The expected model args are:

  • model (huggingface model or local path to mlx model)
  • adapter_path (path to a LoRa adapter to apply to the model)
  • trust_remote_code
  • eos_token
  • top_p (defaults to 1)
  • max_tokens (defaults to 2048)
  • batch_size (defaults to 4)
  • max_gen_tokens (defaults to 256)
  • ensure_bos_token (defaults to False) : Whether or not to ensure the first token is a defined BOS token

@CLAassistant
Copy link

CLAassistant commented May 29, 2024

CLA assistant check
All committers have signed the CLA.

@chimezie
Copy link
Author

chimezie commented May 29, 2024

I'm getting the following traceback running the evaluation this way (in an environment with mlx and mlx-lm):

lm_eval --model mlx --model_args model=internistai/base-7b-v0.2 \
    --tasks medqa_4options \
    --batch_size 64

Traceback:

2024-05-29:13:18:14,114 INFO     [__main__.py:254] Verbosity set to INFO
2024-05-29:13:18:16,354 INFO     [__main__.py:341] Selected Tasks: ['medqa_4options']
2024-05-29:13:18:16,355 INFO     [evaluator.py:141] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
2024-05-29:13:18:16,355 INFO     [evaluator.py:178] Initializing mlx model, with arguments: {'model': 'internistai/base-7b-v0.2'}
Fetching 9 files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9/9 [00:00<00:00, 32968.33it/s]
You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers
2024-05-29:13:18:20,863 INFO     [mlx_llms.py:28] Model type is '<class 'mlx_lm.models.llama.Model'>
2024-05-29:13:18:22,781 INFO     [task.py:398] Building contexts for medqa_4options on rank 0...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1273/1273 [00:00<00:00, 198223.53it/s]
2024-05-29:13:18:22,818 INFO     [evaluator.py:395] Running loglikelihood requests
Running loglikelihood requests (79 batches):  37%|███████████████████████████████████████▋                                                                    | 29/79 [10:13<15:22, 18.46s/it]Running loglikelihood requests (79 batches): 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████| 79/79 [26:40<00:00, 20.26s/it]
[..snip..]
Traceback (most recent call last):
  File "/path/to/bin/lm_eval", line 8, in <module>
    sys.exit(cli_evaluate())
             ^^^^^^^^^^^^^^
  File "/path/to/lm_eval/__main__.py", line 347, in cli_evaluate
    results = evaluator.simple_evaluate(
              ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/path/to/lm_eval/utils.py", line 321, in _wrapper
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/path/to/lm_eval/evaluator.py", line 256, in simple_evaluate
    results = evaluate(
              ^^^^^^^^^
  File "/path/to/lm_eval/utils.py", line 321, in _wrapper
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/path/to/lm_eval/evaluator.py", line 421, in evaluate
    task.apply_filters()
  File "/path/to/lm_eval/api/task.py", line 1000, in apply_filters
    f.apply(self._instances)
  File "/path/to/lm_eval/api/filter.py", line 55, in apply
    for inst, resp in zip(instances, resps):
  File "/path/to/lm_eval/filters/selection.py", line 23, in <lambda>
    return map(lambda r: r[0], resps)

The implemented loglikelihood function returns a list of 5,056 pairs of (log-likelihood, boolean). However, for some reason, the TakeFirstFilter.apply method receives a resps parameter with 5,092 resources, the last of which are empty lists, which seems to be causing the traceback.

Any help would be greatly appreciated.

@chimezie
Copy link
Author

However, I was able to run it against mmlu_professional_medicine:

lm_eval --model mlx --model_args model=internistai/base-7b-v0.2 \
>     --tasks mmlu_professional_medicine \
>     --batch_size 64
[..snip..]
mlx (model=internistai/base-7b-v0.2), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 64
|        Tasks        |Version|Filter|n-shot|Metric|Value |   |Stderr|
|---------------------|------:|------|-----:|------|-----:|---|-----:|
|professional_medicine|      0|none  |     0|acc   |0.1838|±  |0.0235|

@chimezie
Copy link
Author

chimezie commented Jun 1, 2024

Oddly enough, I can get a clean eval of internistai/base-7b-v0.2 against mmlu_professional_medicine tasks on MLX and then HF but still get the issue above when run against the medqa_4options task:

% time lm_eval --model mlx --model_args model=internistai/base-7b-v0.2 \                                              
    --tasks mmlu_professional_medicine \
    --batch_size 64 
2024-05-31:15:31:05,832 INFO     [evaluator.py:395] Running loglikelihood requests
Running loglikelihood requests (17 batches): 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████| 17/17 [04:55<00:00, 17.36s/it]
mlx (model=internistai/base-7b-v0.2), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 64
|        Tasks        |Version|Filter|n-shot|Metric|Value |   |Stderr|
|---------------------|------:|------|-----:|------|-----:|---|-----:|
|professional_medicine|      0|none  |     0|acc   |0.7647|±  |0.0258|

lm_eval --model mlx --model_args model=internistai/base-7b-v0.2 --tasks   64  7.96s user 35.39s system 13% cpu 5:10.00 total

Hugging Face run on the same model:

% time lm_eval --model hf --model_args pretrained=internistai/base-7b-v0.2,dtype="float" --tasks mmlu_professional_medicine --device mps  --batch_size 64
hf (pretrained=internistai/base-7b-v0.2,dtype=float), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 64
|        Tasks        |Version|Filter|n-shot|Metric|Value |   |Stderr|
|---------------------|------:|------|-----:|------|-----:|---|-----:|
|professional_medicine|      0|none  |     0|acc   |0.7647|±  |0.0258|

lm_eval --model hf --model_args  --tasks mmlu_professional_medicine --device   28.83s user 117.90s system 63% cpu 3:49.41 total

@chimezie
Copy link
Author

I fixed some handling of batch remainders, and it looks good; running comparisons against HF/MPS/Pytorch for medqa and some related subsets of MMLU

Copy link
Contributor

@lintangsutawika lintangsutawika left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could add installation dependancies (like lm_eval[mlx] see pyproject.toml) and a way to check if library is installed when called (see lm_eval/models/anthropic_llms.py)

@lintangsutawika
Copy link
Contributor

@haileyschoelkopf bringing this to your attention as well.

Copy link
Contributor

@baberabb baberabb left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi! thanks for the substantial PR, and sorry it took so long. Left a couple of comments mainly about the indexing to extract the logprobs. A couple of other comments:

  1. I think you can leave the tokenization to TemplateLM.loglikelihood (and move the loglikelihood logic to loglikelihood_tokens). This is mainly because we want to use encode_pair, which deals with a bug in some sentencepiece tokenizers.
  2. Would also be great if you could add a test!

lm_eval/models/mlx_llms.py Outdated Show resolved Hide resolved
lm_eval/models/mlx_llms.py Outdated Show resolved Hide resolved
lm_eval/models/mlx_llms.py Outdated Show resolved Hide resolved
lm_eval/models/mlx_llms.py Outdated Show resolved Hide resolved
lm_eval/models/mlx_llms.py Outdated Show resolved Hide resolved
@chimezie
Copy link
Author

Hi! thanks for the substantial PR, and sorry it took so long.

No worries

Left a couple of comments mainly about the indexing to extract the logprobs. A couple of other comments:

Thanks.

  1. I think you can leave the tokenization to TemplateLM.loglikelihood (and move the loglikelihood logic to loglikelihood_tokens). This is mainly because we want to use encode_pair, which deals with a bug in some sentencepiece tokenizers.

Got it. Thanks. It wasn't always clear to me how to override this behavior in the least disruptive way, but this helps. I'll move this to loglikelihood_tokens.

  1. Would also be great if you could add a test!

I will do that. Are there examples of other tests for lm_eval models that I can use to determine what conventions to follow?

However, getting jinja2 Exception ("Failed to apply chat template. removing the system role in chat history.") when trying (will add test cases once it run)
@chimezie

This comment was marked as outdated.

@chimezie

This comment was marked as outdated.

@chimezie
Copy link
Author

chimezie commented Dec 1, 2024

@baberabb I've removed all dependencies on the caching and I'm able to get similar answer log prob and greedy = continuation values for a handful of questions I probed. However, the final top-level figures still don't match, and I have run out of ideas why and wonder if the issue is at the level above _loglikelihood_tokens:

% lm_eval --model mlx --model_args model=internistai/base-7b-v0.2 --tasks mmlusr_question_and_answer_clinical_knowledge --batch_size 56
[..snip..]
mlx (model=internistai/base-7b-v0.2), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 56
|      Tasks       |Version|Filter|n-shot|Metric|   |Value |   |Stderr|
|------------------|------:|------|-----:|------|---|-----:|---|-----:|
|clinical knowledge|      1|none  |     0|acc   |↑  |0.2302|±  |0.0259|
% lm_eval --model hf --model_args pretrained=internistai/base-7b-v0.2,dtype="float32" --tasks mmlusr_question_and_answer_clinical_knowledge --batch_size 56 --device mps
[..snip..]
hf (pretrained=internistai/base-7b-v0.2,dtype=float32), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 56
|      Tasks       |Version|Filter|n-shot|Metric|   |Value |   |Stderr|
|------------------|------:|------|-----:|------|---|-----:|---|-----:|
|clinical knowledge|      1|none  |     0|acc   |↑  |0.5132|±  |0.0308|

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants