Skip to content

xisen-w/citadal_datathon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Citadel Datathon Collaboration Repository

Overview

This repository contains all the collaborative materials used in our project for the Citadel Datathon. Here, you'll find the data analysis notebooks, visualizations, data files, and the code for our web application demo. Our project aims to explore the socio-economic impacts and health outcomes associated with the consumption of ultra-processed foods in the United States.

predictedAdult Obesity raw value_United States_2024

predictedLimited access to healthy foods raw value_Autauga County_2024

Repository Contents

  • data: This directory contains all datasets used throughout the project.
  • notebooks: Jupyter notebooks with extensive Exploratory Data Analyses (EDAs), predictive modeling, and statistical tests.
  • plots: Visualizations generated during the analysis, used both within the notebooks and in our final presentation.
  • web app: Source code for the web application demo that visualizes our findings and model predictions.
  • model: All 70+ models trained for different purposes
  • README.md: This file, which provides an overview of the repository.

Models and Predictions

"The predictive models developed in this study, including Random Forest, ARIMA, and Neural Networks, leverage advanced statistical methods and machine learning to forecast the health impacts of ultra-processed food consumption. These models not only predict the future public health scenarios but also assess the effectiveness of potential interventions aimed at improving dietary habits."

Usage

To use the notebooks or run the web application:

  1. Clone this repository to your local machine.
  2. Ensure you have Python installed, along with the libraries listed in requirements.txt.
  3. Launch Jupyter Notebook or JupyterLab to open the .ipynb files.
  4. To run the web application, run app.py

Contributing

We welcome contributions from other researchers and the public. If you wish to contribute:

  • Fork the repository.
  • Create a new branch for your feature.
  • Commit your changes.
  • Push the branch and open a pull request.

License

This project is open-source under the MIT license.

Acknowledgements

This work was made possible through the support of Citadel and the effort of all team members involved in the datathon. We thank the organizers for providing the opportunity and resources that contributed to this research. We turned this github into public straight after the deadline of submission.

Training Plots

training_NN_V2_Food_Insecurity_raw_value_Food_Environment_Index_raw_value_Limited_Access_to_Healthy_Foods_raw_value_Poor_Physical_Health_Days_raw_value

About

Colab Repo For Citadel Datathon

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages