This repository contains the implementation of the paper GAMMA: Generalizable Articulation Modeling and Manipulation for Articulated Objects
data_generation # contains data_generation code for the project
datasets/ # contains dataloader code for the project
example_data/ # contains example data for the project
visual_model/ # contains code for the model
The code for generating articulation and affordance data will be released later.
conda create -n GAMMA python=3.8
conda activate GAMMA
pip install sapien==2.2.2
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
The backbone depends on PointNet++.
git clone --recursive https://github.com/erikwijmans/Pointnet2_PyTorch
cd Pointnet2_PyTorch
# [IMPORTANT] comment these two lines of code:
# https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/pointnet2_ops_lib/pointnet2_ops/_ext-src/src/sampling_gpu.cu#L100-L101
pip install -r requirements.txt
pip install -e .
python train_model.py --batch_size 16 --train_data_path=<PATH_CONFIG_OPTION> --test_data_path=<PATH_CONFIG_OPTION>
python train_model.py --train 0 --batch_size 1 --test_data_path=<PATH_CONFIG_OPTION>
python inference_demo.py
If you find this code useful in your work, please consider citing:
@article{yu2024gamma,
title={GAMMA: Generalizable Articulation Modeling and Manipulation for Articulated Objects},
author={Yu, Qiaojun and Wang, Junbo and Liu, Wenhai and Hao, Ce and Liu, Liu and Shao, Lin and Wang, Weiming and Lu, Cewu},
booktitle={2024 International Conference on Robotics and Automation (ICRA)},
year={2024},
organization={IEEE},
}