-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
28 changed files
with
2,314 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
"""TIPS: Text-Induced Pose Synthesis | ||
Test TIPS inference pipeline | ||
Created on Thu Nov 18 10:00:00 2021 | ||
Author: Prasun Roy | https://prasunroy.github.io | ||
GitHub: https://github.com/prasunroy/tips | ||
""" | ||
|
||
|
||
import datetime | ||
import numpy as np | ||
import os | ||
import pandas as pd | ||
from PIL import Image | ||
from tips import TIPS | ||
from tips import visualize_skeletons, visualize | ||
|
||
|
||
# ----------------------------------------------------------------------------- | ||
prng = np.random.default_rng(1) | ||
|
||
ckpt_text2pose = './checkpoints/text2pose_75000.pth' | ||
ckpt_refinenet = './checkpoints/refinenet_100.pth' | ||
ckpt_pose2pose = './checkpoints/pose2pose_260500.pth' | ||
|
||
data_root = './data' | ||
save_root = f'./output/df2df_{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}' | ||
|
||
keypoints = pd.read_csv('./data/keypoints.csv', index_col='file_id') | ||
encodings = pd.read_csv('./data/encodings.csv', index_col='file_id') | ||
img_pairs = pd.read_csv('./data/img_pairs_df2df.csv') | ||
|
||
font = './data/FreeMono.ttf' | ||
bbox = (40, 0, 216, 256) | ||
# ----------------------------------------------------------------------------- | ||
|
||
|
||
def file_id(path): | ||
return os.path.splitext(os.path.basename(path))[0] | ||
|
||
|
||
if not os.path.isdir(save_root): | ||
os.makedirs(save_root) | ||
|
||
|
||
tips = TIPS(ckpt_text2pose, ckpt_refinenet, ckpt_pose2pose) | ||
|
||
|
||
z = prng.normal(size=128).astype(np.float32) | ||
|
||
|
||
layout = [ | ||
['iA', 'kA', 'iB', 'kB', 'iB_k0'], | ||
['iA', 'kA', 'iB', 'kB_c1', 'iB_c1'], | ||
['iA', 'kA', 'iB', 'kB_f1', 'iB_f1'], | ||
['iA', 'kA_c2', 'iB', 'kB_c2', 'iB_c2'], | ||
['iA', 'kA_f2', 'iB', 'kB_f2', 'iB_f2'] | ||
] | ||
|
||
|
||
for i in range(len(img_pairs)): | ||
fpA = img_pairs.iloc[i].imgA | ||
fpB = img_pairs.iloc[i].imgB | ||
|
||
source_text_encoding = encodings.loc[file_id(fpA)].values[0:84].astype(np.float32) | ||
target_text_encoding = encodings.loc[file_id(fpB)].values[0:84].astype(np.float32) | ||
|
||
source_keypoints = keypoints.loc[file_id(fpA)].values[2:38].astype(np.int32) | ||
target_keypoints = keypoints.loc[file_id(fpB)].values[2:38].astype(np.int32) | ||
|
||
source_image = Image.open(f'{data_root}/{fpA}') | ||
target_image = Image.open(f'{data_root}/{fpB}') | ||
|
||
iB_k = tips.benchmark(source_image, source_keypoints, target_keypoints) | ||
out1 = tips.pipeline(source_image, source_keypoints, target_text_encoding, z) | ||
out2 = tips.pipeline_full(source_image, source_text_encoding, target_text_encoding, z) | ||
|
||
images_dict = { | ||
'iA': source_image.crop(bbox), | ||
'iB': target_image.crop(bbox), | ||
'iB_k0': iB_k.crop(bbox), | ||
'iB_c1': out1['iB_c'].crop(bbox), | ||
'iB_f1': out1['iB_f'].crop(bbox), | ||
'iB_c2': out2['iB_c'].crop(bbox), | ||
'iB_f2': out2['iB_f'].crop(bbox), | ||
'kA': Image.fromarray(visualize_skeletons([source_keypoints], head_color=(100, 255, 100))).crop(bbox), | ||
'kB': Image.fromarray(visualize_skeletons([target_keypoints], head_color=(100, 255, 100))).crop(bbox), | ||
'kA_c2': Image.fromarray(visualize_skeletons([out2['kA_c']], head_color=(255, 100, 100))).crop(bbox), | ||
'kA_f2': Image.fromarray(visualize_skeletons([out2['kA_f']], head_color=(100, 100, 255))).crop(bbox), | ||
'kB_c1': Image.fromarray(visualize_skeletons([out1['kB_c']], head_color=(255, 100, 100))).crop(bbox), | ||
'kB_f1': Image.fromarray(visualize_skeletons([out1['kB_f']], head_color=(100, 100, 255))).crop(bbox), | ||
'kB_c2': Image.fromarray(visualize_skeletons([out2['kB_c']], head_color=(255, 100, 100))).crop(bbox), | ||
'kB_f2': Image.fromarray(visualize_skeletons([out2['kB_f']], head_color=(100, 100, 255))).crop(bbox), | ||
} | ||
|
||
grid = visualize(images_dict, layout, True, font) | ||
grid.save(f'{save_root}/{file_id(fpA)}____{file_id(fpB)}.png') | ||
print(f'\r[TIPS] Testing inference pipeline... {i+1}/{len(img_pairs)}', end='') | ||
|
||
print('') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
"""TIPS: Text-Induced Pose Synthesis | ||
Test TIPS inference pipeline | ||
Created on Thu Nov 18 10:00:00 2021 | ||
Author: Prasun Roy | https://prasunroy.github.io | ||
GitHub: https://github.com/prasunroy/tips | ||
""" | ||
|
||
|
||
import datetime | ||
import numpy as np | ||
import os | ||
import pandas as pd | ||
from PIL import Image | ||
from tips import TIPS | ||
from tips import visualize_skeletons, visualize | ||
|
||
|
||
# ----------------------------------------------------------------------------- | ||
prng = np.random.default_rng(1) | ||
|
||
ckpt_text2pose = './checkpoints/text2pose_75000.pth' | ||
ckpt_refinenet = './checkpoints/refinenet_100.pth' | ||
ckpt_pose2pose = './checkpoints/pose2pose_260500.pth' | ||
|
||
data_root = './data' | ||
save_root = f'./output/df2rw_{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}' | ||
|
||
keypoints = pd.read_csv('./data/keypoints.csv', index_col='file_id') | ||
encodings = pd.read_csv('./data/encodings.csv', index_col='file_id') | ||
img_pairs = pd.read_csv('./data/img_pairs_df2rw.csv') | ||
|
||
font = './data/FreeMono.ttf' | ||
bbox = (40, 0, 216, 256) | ||
# ----------------------------------------------------------------------------- | ||
|
||
|
||
def file_id(path): | ||
return os.path.splitext(os.path.basename(path))[0] | ||
|
||
|
||
if not os.path.isdir(save_root): | ||
os.makedirs(save_root) | ||
|
||
|
||
tips = TIPS(ckpt_text2pose, ckpt_refinenet, ckpt_pose2pose) | ||
|
||
|
||
z = prng.normal(size=128).astype(np.float32) | ||
|
||
|
||
layout = [ | ||
['iA', 'kA', 'iB', 'kB', 'iB_k0'], | ||
['iA', 'kA', 'iB', 'kB_c1', 'iB_c1'], | ||
['iA', 'kA', 'iB', 'kB_f1', 'iB_f1'], | ||
['iA', 'kA_c2', 'iB', 'kB_c2', 'iB_c2'], | ||
['iA', 'kA_f2', 'iB', 'kB_f2', 'iB_f2'] | ||
] | ||
|
||
|
||
for i in range(len(img_pairs)): | ||
fpA = img_pairs.iloc[i].imgA | ||
fpB = img_pairs.iloc[i].imgB | ||
|
||
source_text_encoding = encodings.loc[file_id(fpA)].values[0:84].astype(np.float32) | ||
target_text_encoding = encodings.loc[file_id(fpB)].values[0:84].astype(np.float32) | ||
|
||
source_keypoints = keypoints.loc[file_id(fpA)].values[2:38].astype(np.int32) | ||
target_keypoints = keypoints.loc[file_id(fpB)].values[2:38].astype(np.int32) | ||
|
||
source_image = Image.open(f'{data_root}/{fpA}') | ||
target_image = Image.open(f'{data_root}/{fpB}') | ||
|
||
iB_k = tips.benchmark(source_image, source_keypoints, target_keypoints) | ||
out1 = tips.pipeline(source_image, source_keypoints, target_text_encoding, z) | ||
out2 = tips.pipeline_full(source_image, source_text_encoding, target_text_encoding, z) | ||
|
||
images_dict = { | ||
'iA': source_image.crop(bbox), | ||
'iB': target_image.crop(bbox), | ||
'iB_k0': iB_k.crop(bbox), | ||
'iB_c1': out1['iB_c'].crop(bbox), | ||
'iB_f1': out1['iB_f'].crop(bbox), | ||
'iB_c2': out2['iB_c'].crop(bbox), | ||
'iB_f2': out2['iB_f'].crop(bbox), | ||
'kA': Image.fromarray(visualize_skeletons([source_keypoints], head_color=(100, 255, 100))).crop(bbox), | ||
'kB': Image.fromarray(visualize_skeletons([target_keypoints], head_color=(100, 255, 100))).crop(bbox), | ||
'kA_c2': Image.fromarray(visualize_skeletons([out2['kA_c']], head_color=(255, 100, 100))).crop(bbox), | ||
'kA_f2': Image.fromarray(visualize_skeletons([out2['kA_f']], head_color=(100, 100, 255))).crop(bbox), | ||
'kB_c1': Image.fromarray(visualize_skeletons([out1['kB_c']], head_color=(255, 100, 100))).crop(bbox), | ||
'kB_f1': Image.fromarray(visualize_skeletons([out1['kB_f']], head_color=(100, 100, 255))).crop(bbox), | ||
'kB_c2': Image.fromarray(visualize_skeletons([out2['kB_c']], head_color=(255, 100, 100))).crop(bbox), | ||
'kB_f2': Image.fromarray(visualize_skeletons([out2['kB_f']], head_color=(100, 100, 255))).crop(bbox), | ||
} | ||
|
||
grid = visualize(images_dict, layout, True, font) | ||
grid.save(f'{save_root}/{file_id(fpA)}____{file_id(fpB)}.png') | ||
print(f'\r[TIPS] Testing inference pipeline... {i+1}/{len(img_pairs)}', end='') | ||
|
||
print('') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
"""TIPS: Text-Induced Pose Synthesis | ||
Package initialization | ||
Created on Thu Nov 18 10:00:00 2021 | ||
Author: Prasun Roy | https://prasunroy.github.io | ||
GitHub: https://github.com/prasunroy/tips | ||
""" | ||
|
||
|
||
__version__ = '1.0.0' | ||
|
||
from .tips import TIPS | ||
from .visualization import visualize_skeletons, visualize |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
"""TIPS: Text-Induced Pose Synthesis | ||
Package initialization | ||
Created on Thu Nov 18 10:00:00 2021 | ||
Author: Prasun Roy | https://prasunroy.github.io | ||
GitHub: https://github.com/prasunroy/tips | ||
""" | ||
|
||
|
||
__version__ = '1.0.0' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
"""TIPS: Text-Induced Pose Synthesis | ||
Stage-3 network: Pose2Pose generator | ||
Created on Thu Nov 18 10:00:00 2021 | ||
Author: Prasun Roy | https://prasunroy.github.io | ||
GitHub: https://github.com/prasunroy/tips | ||
""" | ||
|
||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
def conv1x1(in_channels, out_channels): | ||
return nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False) | ||
|
||
|
||
def conv3x3(in_channels, out_channels): | ||
return nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False) | ||
|
||
|
||
def downconv2x(in_channels, out_channels): | ||
return nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False) | ||
|
||
|
||
def upconv2x(in_channels, out_channels): | ||
return nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False) | ||
|
||
|
||
class ResidualBlock(nn.Module): | ||
|
||
def __init__(self, num_channels): | ||
super(ResidualBlock, self).__init__() | ||
layers = [ | ||
conv3x3(num_channels, num_channels), | ||
nn.BatchNorm2d(num_channels), | ||
nn.ReLU(inplace=True), | ||
conv3x3(num_channels, num_channels), | ||
nn.BatchNorm2d(num_channels) | ||
] | ||
self.layers = nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
y = self.layers(x) + x | ||
return y | ||
|
||
|
||
class NetG(nn.Module): | ||
|
||
def __init__(self, in1_channels, in2_channels, out_channels, ngf=64): | ||
super(NetG, self).__init__() | ||
|
||
self.in1_conv1 = self.inconv(in1_channels, ngf) | ||
self.in1_down1 = self.down2x(ngf, ngf*2) | ||
self.in1_down2 = self.down2x(ngf*2, ngf*4) | ||
self.in1_down3 = self.down2x(ngf*4, ngf*8) | ||
self.in1_down4 = self.down2x(ngf*8, ngf*16) | ||
|
||
self.in2_conv1 = self.inconv(in2_channels, ngf) | ||
self.in2_down1 = self.down2x(ngf, ngf*2) | ||
self.in2_down2 = self.down2x(ngf*2, ngf*4) | ||
self.in2_down3 = self.down2x(ngf*4, ngf*8) | ||
self.in2_down4 = self.down2x(ngf*8, ngf*16) | ||
|
||
self.out_up1 = self.up2x(ngf*16, ngf*8) | ||
self.out_up2 = self.up2x(ngf*8, ngf*4) | ||
self.out_up3 = self.up2x(ngf*4, ngf*2) | ||
self.out_up4 = self.up2x(ngf*2, ngf) | ||
|
||
self.out_conv1 = self.outconv(ngf, out_channels) | ||
|
||
def inconv(self, in_channels, out_channels): | ||
return nn.Sequential( | ||
conv3x3(in_channels, out_channels), | ||
nn.BatchNorm2d(out_channels), | ||
nn.ReLU(inplace=True) | ||
) | ||
|
||
def outconv(self, in_channels, out_channels): | ||
return nn.Sequential( | ||
ResidualBlock(in_channels), | ||
ResidualBlock(in_channels), | ||
ResidualBlock(in_channels), | ||
ResidualBlock(in_channels), | ||
conv1x1(in_channels, out_channels), | ||
nn.Tanh() | ||
) | ||
|
||
def down2x(self, in_channels, out_channels): | ||
return nn.Sequential( | ||
downconv2x(in_channels, out_channels), | ||
nn.BatchNorm2d(out_channels), | ||
nn.ReLU(inplace=True), | ||
ResidualBlock(out_channels) | ||
) | ||
|
||
def up2x(self, in_channels, out_channels): | ||
return nn.Sequential( | ||
upconv2x(in_channels, out_channels), | ||
nn.BatchNorm2d(out_channels), | ||
nn.ReLU(inplace=True), | ||
ResidualBlock(out_channels) | ||
) | ||
|
||
def forward(self, x1, x2): | ||
x1_c1 = self.in1_conv1(x1) | ||
x1_d1 = self.in1_down1(x1_c1) | ||
x1_d2 = self.in1_down2(x1_d1) | ||
x1_d3 = self.in1_down3(x1_d2) | ||
x1_d4 = self.in1_down4(x1_d3) | ||
|
||
x2_c1 = self.in2_conv1(x2) | ||
x2_d1 = self.in2_down1(x2_c1) | ||
x2_d2 = self.in2_down2(x2_d1) | ||
x2_d3 = self.in2_down3(x2_d2) | ||
x2_d4 = self.in2_down4(x2_d3) | ||
|
||
y = x1_d4 * torch.sigmoid(x2_d4) | ||
y = self.out_up1(y) | ||
y = y * torch.sigmoid(x2_d3) | ||
y = self.out_up2(y) | ||
y = y * torch.sigmoid(x2_d2) | ||
y = self.out_up3(y) | ||
y = y * torch.sigmoid(x2_d1) | ||
y = self.out_up4(y) | ||
y = self.out_conv1(y) | ||
|
||
return y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
"""TIPS: Text-Induced Pose Synthesis | ||
Stage-2 network: RefineNet regressor | ||
Created on Thu Nov 18 10:00:00 2021 | ||
Author: Prasun Roy | https://prasunroy.github.io | ||
GitHub: https://github.com/prasunroy/tips | ||
""" | ||
|
||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class RefineNet(nn.Module): | ||
|
||
def __init__(self, in_features, out_features, bias=True): | ||
super(RefineNet, self).__init__() | ||
self.linear1 = nn.Linear(in_features, 128, bias=bias) | ||
self.linear2 = nn.Linear(128, 128, bias=bias) | ||
self.linear3 = nn.Linear(128, 128, bias=bias) | ||
self.linear4 = nn.Linear(128, out_features, bias=bias) | ||
|
||
def forward(self, x): | ||
y = torch.relu(self.linear1(x)) | ||
y = torch.relu(self.linear2(y)) | ||
y = torch.relu(self.linear3(y)) | ||
y = torch.tanh(self.linear4(y)) | ||
return y |
Oops, something went wrong.