Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[backport 2.3.x] TST (string dtype): un-xfail string tests specific to object dtype (#59433) #60180

Open
wants to merge 2 commits into
base: 2.3.x
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 5 additions & 8 deletions pandas/tests/copy_view/test_interp_fillna.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas import (
NA,
ArrowDtype,
Expand Down Expand Up @@ -137,10 +135,9 @@ def test_interp_fill_functions_inplace(
assert np.shares_memory(arr, get_array(df, "a")) is (dtype == "float64")


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_interpolate_cleaned_fill_method(using_copy_on_write):
# Check that "method is set to None" case works correctly
def test_interpolate_cannot_with_object_dtype(using_copy_on_write):
df = DataFrame({"a": ["a", np.nan, "c"], "b": 1})
df["a"] = df["a"].astype(object)
df_orig = df.copy()

msg = "DataFrame.interpolate with object dtype"
Expand All @@ -159,16 +156,16 @@ def test_interpolate_cleaned_fill_method(using_copy_on_write):
tm.assert_frame_equal(df, df_orig)


@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)")
def test_interpolate_object_convert_no_op(using_copy_on_write):
def test_interpolate_object_convert_no_op(using_copy_on_write, using_infer_string):
df = DataFrame({"a": ["a", "b", "c"], "b": 1})
df["a"] = df["a"].astype(object)
arr_a = get_array(df, "a")
msg = "DataFrame.interpolate with method=pad is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
df.interpolate(method="pad", inplace=True)

# Now CoW makes a copy, it should not!
if using_copy_on_write:
if using_copy_on_write and not using_infer_string:
assert df._mgr._has_no_reference(0)
assert np.shares_memory(arr_a, get_array(df, "a"))

Expand Down
12 changes: 7 additions & 5 deletions pandas/tests/copy_view/test_replace.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,13 +356,15 @@ def test_replace_empty_list(using_copy_on_write):
assert not df2._mgr._has_no_reference(0)


@pytest.mark.xfail(using_string_dtype() and HAS_PYARROW, reason="TODO(infer_string)")
@pytest.mark.parametrize("value", ["d", None])
def test_replace_object_list_inplace(using_copy_on_write, value):
df = DataFrame({"a": ["a", "b", "c"]})
def test_replace_object_list_inplace(using_copy_on_write, using_infer_string, value):
df = DataFrame({"a": ["a", "b", "c"]}, dtype=object)
arr = get_array(df, "a")
df.replace(["c"], value, inplace=True)
if using_copy_on_write or value is None:
# with future.infer_string we get warning about object dtype getting cast
warning = FutureWarning if using_infer_string and value is not None else None
with tm.assert_produces_warning(warning):
df.replace(["c"], value, inplace=True)
if (using_copy_on_write or value is None) and not warning:
assert np.shares_memory(arr, get_array(df, "a"))
else:
# This could be inplace
Expand Down
26 changes: 18 additions & 8 deletions pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -1704,20 +1704,25 @@ def test_unique_complex_numbers(self, array, expected):


class TestHashTable:
@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False)
@pytest.mark.parametrize(
"htable, data",
[
(ht.PyObjectHashTable, [f"foo_{i}" for i in range(1000)]),
(ht.StringHashTable, [f"foo_{i}" for i in range(1000)]),
(
ht.PyObjectHashTable,
np.array([f"foo_{i}" for i in range(1000)], dtype=object),
),
(
ht.StringHashTable,
np.array([f"foo_{i}" for i in range(1000)], dtype=object),
),
(ht.Float64HashTable, np.arange(1000, dtype=np.float64)),
(ht.Int64HashTable, np.arange(1000, dtype=np.int64)),
(ht.UInt64HashTable, np.arange(1000, dtype=np.uint64)),
],
)
def test_hashtable_unique(self, htable, data, writable):
# output of maker has guaranteed unique elements
s = Series(data)
s = Series(data, dtype=data.dtype)
if htable == ht.Float64HashTable:
# add NaN for float column
s.loc[500] = np.nan
Expand All @@ -1744,20 +1749,25 @@ def test_hashtable_unique(self, htable, data, writable):
reconstr = result_unique[result_inverse]
tm.assert_numpy_array_equal(reconstr, s_duplicated.values)

@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False)
@pytest.mark.parametrize(
"htable, data",
[
(ht.PyObjectHashTable, [f"foo_{i}" for i in range(1000)]),
(ht.StringHashTable, [f"foo_{i}" for i in range(1000)]),
(
ht.PyObjectHashTable,
np.array([f"foo_{i}" for i in range(1000)], dtype=object),
),
(
ht.StringHashTable,
np.array([f"foo_{i}" for i in range(1000)], dtype=object),
),
(ht.Float64HashTable, np.arange(1000, dtype=np.float64)),
(ht.Int64HashTable, np.arange(1000, dtype=np.int64)),
(ht.UInt64HashTable, np.arange(1000, dtype=np.uint64)),
],
)
def test_hashtable_factorize(self, htable, writable, data):
# output of maker has guaranteed unique elements
s = Series(data)
s = Series(data, dtype=data.dtype)
if htable == ht.Float64HashTable:
# add NaN for float column
s.loc[500] = np.nan
Expand Down
Loading