Skip to content

Commit

Permalink
Update 2024-03-01-数学学习.md
Browse files Browse the repository at this point in the history
  • Loading branch information
nooblong committed Nov 1, 2024
1 parent f7b5ea7 commit 0bf3cf2
Showing 1 changed file with 118 additions and 0 deletions.
118 changes: 118 additions & 0 deletions _posts/2024-03-01-数学学习.md
Original file line number Diff line number Diff line change
Expand Up @@ -356,6 +356,124 @@ if F' = G', F(x) = G(x) + c
1. 行列式
• 行列式的定义与性质
2. 矩阵

### 题目要求

已知:

$ A \vec{v} = \lambda \vec{v} $

矩阵 $ A = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} $。

求 $ A $ 的特征向量和特征值,并计算 $ A^n $ 的表达式。

---

### 解答

#### 1. 特征值

特征值满足 $ \det(A - \lambda I) = 0 $。

$$
A - \lambda I = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -\lambda & 1 \\ 1 & -1 - \lambda \end{bmatrix}
$$

求行列式:

$$
\det(A - \lambda I) = \lambda^2 - \lambda - 1 = 0
$$

解得特征值:

$$
\lambda = \frac{1 \pm \sqrt{5}}{2}
$$

记为:

$$
\lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}
$$

---

#### 2. 特征向量

对于特征值 $ \lambda_1 = \frac{1 + \sqrt{5}}{2} $:

$$
A - \lambda_1 I = \begin{bmatrix} -\frac{1 + \sqrt{5}}{2} & 1 \\ 1 & -\frac{1 + \sqrt{5}}{2} \end{bmatrix}
$$

求解 $ (A - \lambda_1 I) \vec{v} = 0 $,即:

$$
-\frac{1 + \sqrt{5}}{2} x + y = 0
$$

令 $ x = 1 $,则 $ y = \frac{1 + \sqrt{5}}{2} $。

故特征向量为:

$$
\vec{v_1} = \begin{bmatrix} 1 \\ \frac{1 + \sqrt{5}}{2} \end{bmatrix}
$$

对于特征值 $ \lambda_2 = \frac{1 - \sqrt{5}}{2} $:

$$
A - \lambda_2 I = \begin{bmatrix} -\frac{1 - \sqrt{5}}{2} & 1 \\ 1 & -\frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

求解 $ (A - \lambda_2 I) \vec{v} = 0 $,即:

$$
-\frac{1 - \sqrt{5}}{2} x + y = 0
$$

令 $ x = 1 $,则 $ y = \frac{1 - \sqrt{5}}{2} $。

故特征向量为:

$$
\vec{v_2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

---

#### 3. 求 $ A^n $ 的表达式

设 $ A = P D P^{-1} $,则 $ A^n = P D^n P^{-1} $。

已知:

$$
D = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & 0 \\ 0 & \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
D^n = \begin{bmatrix} \left( \frac{1 + \sqrt{5}}{2} \right)^n & 0 \\ 0 & \left( \frac{1 - \sqrt{5}}{2} \right)^n \end{bmatrix}
$$

求 $ P $ 和 $ P^{-1} $:

$$
P = \begin{bmatrix} 1 & 1 \\ \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
P^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} \frac{\sqrt{5} - 1}{2} & -1 \\ -\frac{\sqrt{5} + 1}{2} & 1 \end{bmatrix}
$$

因此,

$$
A^n = P D^n P^{-1}
$$


• 矩阵的基本运算
• 逆矩阵
• 矩阵的秩
Expand Down

0 comments on commit 0bf3cf2

Please sign in to comment.