-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Created script that creates table S6 (relative abundances)
- Loading branch information
1 parent
4fc7590
commit 2ab28f2
Showing
1 changed file
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import csv | ||
from dataclasses import dataclass | ||
|
||
import matplotlib.pyplot as plt # type: ignore | ||
import numpy as np | ||
|
||
PERCENTILES = [5, 25, 50, 75, 95] | ||
|
||
|
||
@dataclass | ||
class SummaryStats: | ||
mean: float | ||
std: float | ||
min: float | ||
percentiles: dict[int, float] | ||
max: float | ||
|
||
|
||
def tidy_number(reads_required=int) -> str: | ||
sci_notation = f"{reads_required:.2e}" | ||
|
||
coefficient, exponent = sci_notation.split("e") | ||
|
||
is_negative = exponent.startswith("-") | ||
if is_negative: | ||
exponent = exponent[1:] | ||
|
||
# Remove the leading zero from the exponent if it's there | ||
exponent = exponent.lstrip("0") | ||
|
||
# Add back the superscript minus if the exponent was negative | ||
if is_negative: | ||
exponent = "⁻" + exponent | ||
|
||
# Now replace the digits with superscript characters | ||
superscript_map = str.maketrans("0123456789", "⁰¹²³⁴⁵⁶⁷⁸⁹") | ||
exponent = exponent.translate(superscript_map) | ||
|
||
return f"{coefficient} x 10{exponent}" | ||
|
||
|
||
def read_data() -> dict[tuple[str, str, str, str], SummaryStats]: | ||
data = {} | ||
with open("fits_summary.tsv") as datafile: | ||
reader = csv.DictReader(datafile, delimiter="\t") | ||
for row in reader: | ||
virus = row["tidy_name"] | ||
predictor_type = row["predictor_type"] | ||
study = row["study"] | ||
location = row["location"] | ||
if ( | ||
virus == "AAV5" | ||
): # FIXME: Remove this when AAV5 is dropped earlier. | ||
continue | ||
data[virus, predictor_type, study, location] = SummaryStats( | ||
mean=tidy_number(float(row["mean"])), | ||
std=tidy_number(float(row["std"])), | ||
min=tidy_number(float(row["min"])), | ||
percentiles={ | ||
p: tidy_number(float(row[f"{p}%"])) for p in PERCENTILES | ||
}, | ||
max=tidy_number(float(row["max"])), | ||
) | ||
return data | ||
|
||
|
||
def create_tsv(): | ||
data = read_data() | ||
viruses = set() | ||
for entry in data.keys(): | ||
virus, predictor_type = entry[:2] | ||
viruses.add((virus, predictor_type)) | ||
|
||
sorted_viruses = sorted(viruses, key=lambda x: (x[1], x[0])) | ||
|
||
headers = ["Virus", "Predictor Type", "Study", "Median", "Lower", "Upper"] | ||
|
||
with open("output_summary.tsv", "w", newline="") as file: | ||
writer = csv.DictWriter(file, fieldnames=headers, delimiter="\t") | ||
writer.writeheader() | ||
|
||
for virus, predictor_type in sorted_viruses: | ||
studies = ["rothman", "crits_christoph", "spurbeck"] + ( | ||
["brinch"] if predictor_type == "prevalence" else [] | ||
) | ||
for study in studies: | ||
stats = data[virus, predictor_type, study, "Overall"] | ||
writer.writerow( | ||
{ | ||
"Virus": virus, | ||
"Predictor Type": predictor_type, | ||
"Study": study, | ||
"Median": stats.percentiles[50], | ||
"Lower": stats.percentiles[5], | ||
"Upper": stats.percentiles[95], | ||
} | ||
) | ||
|
||
|
||
def start(): | ||
create_tsv() | ||
|
||
|
||
if __name__ == "__main__": | ||
start() |