-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #10 from naobservatory/simon-comp-fig-4
Simon comp fig 4
- Loading branch information
Showing
1 changed file
with
329 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
#!/usr/bin/env python3 | ||
import sys | ||
from pathlib import Path | ||
|
||
sys.path.append("..") | ||
|
||
import matplotlib.patches as mpatches # type: ignore | ||
import matplotlib.pyplot as plt # type: ignore | ||
import matplotlib.ticker as ticker # type: ignore | ||
import numpy as np | ||
import pandas as pd | ||
import seaborn as sns # type: ignore | ||
|
||
from pathogens import pathogens | ||
|
||
|
||
def nucleic_acid(pathogen: str) -> str: | ||
return pathogens[pathogen].pathogen_chars.na_type.value | ||
|
||
|
||
def selection_round(pathogen: str) -> str: | ||
return pathogens[pathogen].pathogen_chars.selection.value | ||
|
||
|
||
def study_name(study: str) -> str: | ||
return { | ||
"brinch": "Brinch (DNA)", | ||
"crits_christoph": "Crits-Christoph", | ||
"rothman": "Rothman", | ||
"spurbeck": "Spurbeck", | ||
}[study] | ||
|
||
|
||
plt.rcParams["font.size"] = 8 | ||
|
||
|
||
def separate_viruses(ax) -> None: | ||
yticks = ax.get_yticks() | ||
ax.hlines( | ||
[(y1 + y2) / 2 for y1, y2 in zip(yticks[:-1], yticks[1:])], | ||
*ax.get_xlim(), | ||
color="grey", | ||
linewidth=0.3, | ||
linestyle=":", | ||
) | ||
|
||
|
||
def adjust_axes(ax, predictor_type: str) -> None: | ||
yticks = ax.get_yticks() | ||
# Y-axis is reflected | ||
ax.set_ylim([max(yticks) + 0.5, min(yticks - 0.5)]) | ||
ax.tick_params(left=False) | ||
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_func)) | ||
ax.spines["right"].set_visible(False) | ||
ax.spines["top"].set_visible(False) | ||
ax.spines["left"].set_visible(False) | ||
ax.vlines( | ||
ax.get_xticks()[1:-1], | ||
*ax.get_ylim(), | ||
color="grey", | ||
linewidth=0.3, | ||
linestyle=":", | ||
zorder=-1, | ||
) | ||
# ax.set_xscale("log") | ||
ax.set_xlabel( | ||
r"$\mathrm{RA}" | ||
f"{predictor_type[0]}" | ||
r"(1\%)$" | ||
": expected relative abundance at 1% " | ||
f"{predictor_type} " | ||
) | ||
ax.set_ylabel("") | ||
|
||
|
||
def plot_violin( | ||
ax, | ||
data: pd.DataFrame, | ||
viral_reads: pd.DataFrame, | ||
y: str, | ||
sorting_order: list[str], | ||
ascending: list[bool], | ||
hatch_zero_counts: bool = False, | ||
violin_scale=1.0, | ||
) -> None: | ||
assert len(sorting_order) == len(ascending) | ||
plotting_order = viral_reads.sort_values( | ||
sorting_order, ascending=ascending | ||
).reset_index() | ||
sns.violinplot( | ||
ax=ax, | ||
data=data, | ||
x="log10ra", | ||
y=y, | ||
order=plotting_order[y].unique(), | ||
hue="study", | ||
hue_order=plotting_order.study.unique(), | ||
inner=None, | ||
linewidth=0.0, | ||
bw=0.5, | ||
scale="area", | ||
scale_hue=False, | ||
cut=0, | ||
) | ||
x_min = ax.get_xlim()[0] | ||
for num_reads, patches in zip(plotting_order.viral_reads, ax.collections): | ||
# alpha = min((num_reads + 1) / 10, 1.0) | ||
if num_reads == 0: | ||
alpha = 0.5 | ||
elif num_reads < 10: | ||
alpha = 0.5 | ||
else: | ||
alpha = 1.0 | ||
patches.set_alpha(alpha) | ||
# Make violins fatter and hatch if zero counts | ||
for path in patches.get_paths(): | ||
y_mid = path.vertices[0, 1] | ||
path.vertices[:, 1] = ( | ||
violin_scale * (path.vertices[:, 1] - y_mid) + y_mid | ||
) | ||
if (not hatch_zero_counts) and (num_reads == 0): | ||
color = patches.get_facecolor() | ||
y_max = np.max(path.vertices[:, 1]) | ||
y_min = np.min(path.vertices[:, 1]) | ||
x_max = path.vertices[np.argmax(path.vertices[:, 1]), 0] | ||
rect = mpatches.Rectangle( | ||
(x_min, y_min), | ||
x_max - x_min, | ||
y_max - y_min, | ||
facecolor=color, | ||
linewidth=0.0, | ||
alpha=alpha, | ||
fill=False, | ||
hatch="|||", | ||
edgecolor=color, | ||
) | ||
ax.add_patch(rect) | ||
|
||
|
||
def format_func(value, tick_number): | ||
return r"$10^{{{}}}$".format(int(value)) | ||
|
||
|
||
def plot_incidence( | ||
data: pd.DataFrame, input_data: pd.DataFrame, ax: plt.Axes | ||
) -> plt.Axes: | ||
predictor_type = "incidence" | ||
ax.set_xlim((-15, -3)) | ||
plot_violin( | ||
ax=ax, | ||
data=data[ | ||
(data.predictor_type == predictor_type) | ||
& (data.location == "Overall") | ||
& ~( | ||
(data.study == "Crits-Christoph") | ||
& (data.pathogen == "influenza") | ||
) | ||
], | ||
viral_reads=count_viral_reads( | ||
input_data[input_data.predictor_type == predictor_type] | ||
), | ||
y="tidy_name", | ||
sorting_order=[ | ||
"nucleic_acid", | ||
"selection_round", | ||
"samples_observed_by_tidy_name", | ||
"tidy_name", | ||
"study", | ||
], | ||
ascending=[False, True, False, True, False], | ||
violin_scale=2.0, | ||
) | ||
ax.set_xticks(list(range(-15, -1, 2))) | ||
|
||
separate_viruses(ax) | ||
adjust_axes(ax, predictor_type=predictor_type) | ||
legend = ax.legend( | ||
title="MGS study", | ||
bbox_to_anchor=(1.02, 1), | ||
loc="upper left", | ||
borderaxespad=0, | ||
frameon=False, | ||
) | ||
for legend_handle in legend.legend_handles: # type: ignore | ||
legend_handle.set_edgecolor(legend_handle.get_facecolor()) # type: ignore | ||
|
||
ax_title = ax.set_title("a", fontweight="bold") | ||
ax_title.set_position((-0.22, 0)) | ||
return ax | ||
|
||
|
||
def plot_prevalence( | ||
data: pd.DataFrame, input_data: pd.DataFrame, ax: plt.Axes | ||
) -> plt.Axes: | ||
predictor_type = "prevalence" | ||
ax.set_xlim((-15, -3)) | ||
plot_violin( | ||
ax=ax, | ||
data=data[ | ||
(data.predictor_type == predictor_type) | ||
& (data.location == "Overall") | ||
], | ||
viral_reads=count_viral_reads( | ||
input_data[input_data.predictor_type == predictor_type] | ||
), | ||
y="tidy_name", | ||
sorting_order=[ | ||
"nucleic_acid", | ||
"selection_round", | ||
"samples_observed_by_tidy_name", | ||
"tidy_name", | ||
"study", | ||
], | ||
ascending=[False, True, False, True, False], | ||
violin_scale=1.5, | ||
) | ||
ax.set_xlim((-15, -3)) | ||
ax.set_xticks(list(range(-15, -1, 2))) | ||
separate_viruses(ax) | ||
# TODO Get these values automatically | ||
num_rna_1 = 2 | ||
num_dna_1 = 4 | ||
ax.hlines( | ||
[num_rna_1 - 0.5, num_rna_1 + num_dna_1 - 0.5], | ||
*ax.get_xlim(), | ||
linestyle="solid", | ||
color="k", | ||
linewidth=0.5, | ||
) | ||
text_x = np.log10(1.1e-3) | ||
ax.text(text_x, -0.4, "RNA viruses\nSelection Round 1", va="top") | ||
ax.text( | ||
text_x, num_rna_1 - 0.4, "DNA viruses\nSelection Round 1", va="top" | ||
) | ||
ax.text( | ||
text_x, | ||
num_rna_1 + num_dna_1 - 0.4, | ||
"DNA viruses\nSelection Round 2", | ||
va="top", | ||
) | ||
adjust_axes(ax, predictor_type=predictor_type) | ||
legend = ax.legend( | ||
title="MGS study", | ||
bbox_to_anchor=(1.02, 0), | ||
loc="lower left", | ||
borderaxespad=0, | ||
frameon=False, | ||
) | ||
for legend_handle in legend.legend_handles: # type: ignore | ||
legend_handle.set_edgecolor(legend_handle.get_facecolor()) # type: ignore | ||
|
||
ax_title = ax.set_title("b", fontweight="bold") | ||
ax_title.set_position((-0.22, 0)) | ||
|
||
return ax | ||
|
||
|
||
def count_viral_reads( | ||
df: pd.DataFrame, by_location: bool = False | ||
) -> pd.DataFrame: | ||
groups = [ | ||
"pathogen", | ||
"tidy_name", | ||
"predictor_type", | ||
"study", | ||
"nucleic_acid", | ||
"selection_round", | ||
] | ||
if by_location: | ||
groups.append("location") | ||
out = df.groupby(groups)[["viral_reads", "observed?"]].sum().reset_index() | ||
out["reads_by_tidy_name"] = out.viral_reads.groupby( | ||
out.tidy_name | ||
).transform("sum") | ||
out["samples_observed_by_tidy_name"] = ( | ||
out["observed?"].groupby(out.tidy_name).transform("sum") | ||
) | ||
return out | ||
|
||
|
||
def composite_figure( | ||
data: pd.DataFrame, | ||
input_data: pd.DataFrame, | ||
) -> plt.Figure: | ||
fig = plt.figure( | ||
figsize=(5, 8), | ||
) | ||
gs = fig.add_gridspec(2, 1, height_ratios=[5, 12], hspace=0.2) | ||
plot_incidence(data, input_data, fig.add_subplot(gs[0, 0])) | ||
plot_prevalence(data, input_data, fig.add_subplot(gs[1, 0])) | ||
return fig | ||
|
||
|
||
def save_plot(fig, figdir: Path, name: str) -> None: | ||
for ext in ["pdf", "png"]: | ||
fig.savefig( | ||
figdir / f"{name}.{ext}", | ||
bbox_inches="tight", | ||
dpi=600, | ||
) | ||
|
||
|
||
def start() -> None: | ||
parent_dir = Path("..") | ||
figdir = Path(parent_dir / "figures") | ||
figdir.mkdir(exist_ok=True) | ||
|
||
fits_df = pd.read_csv(parent_dir / "fits.tsv", sep="\t") | ||
fits_df["study"] = fits_df.study.map(study_name) | ||
fits_df["log10ra"] = np.log10(fits_df.ra_at_1in100) | ||
input_df = pd.read_csv(parent_dir / "input.tsv", sep="\t") | ||
input_df["study"] = input_df.study.map(study_name) | ||
# TODO: Store these in the files instead? | ||
fits_df = fits_df[fits_df["pathogen"] != "aav5"] # FIX ME | ||
input_df = input_df[input_df["pathogen"] != "aav5"] # FIX ME | ||
|
||
input_df["nucleic_acid"] = input_df.pathogen.map(nucleic_acid) | ||
input_df["selection_round"] = input_df.pathogen.map(selection_round) | ||
input_df["observed?"] = input_df.viral_reads > 0 | ||
# For consistency between dataframes (TODO: fix that elsewhere) | ||
input_df["location"] = input_df.fine_location | ||
|
||
fig = composite_figure(fits_df, input_df) | ||
fig.show() | ||
save_plot(fig, figdir, "composite_fig_4") | ||
|
||
|
||
if __name__ == "__main__": | ||
start() |