-
Notifications
You must be signed in to change notification settings - Fork 56
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
use critrion instead of feature test, since it is unstablized
- Loading branch information
Showing
2 changed files
with
160 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
extern crate kdtree; | ||
extern crate rand; | ||
|
||
extern crate criterion; | ||
|
||
use criterion::{criterion_group, criterion_main, Criterion}; | ||
use kdtree::distance::squared_euclidean; | ||
use kdtree::KdTree; | ||
|
||
fn rand_data() -> ([f64; 3], f64) { | ||
rand::random() | ||
} | ||
|
||
fn bench_add_to_kdtree_with_1k_3d_points(c: &mut Criterion) { | ||
let len = 1000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_add_to_kdtree_with_1k_3d_points", |b| { | ||
b.iter(|| kdtree.add(&point.0, point.1).unwrap()); | ||
}); | ||
} | ||
fn bench_nearest_from_kdtree_with_1k_3d_points(c: &mut Criterion) { | ||
let len = 1000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_nearest_from_kdtree_with_1k_3d_points", |b| { | ||
b.iter(|| kdtree.nearest(&point.0, 8, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
fn bench_within_2k_data_01_radius(c: &mut Criterion) { | ||
let len = 2000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
|
||
c.bench_function("bench_within_2k_data_01_radius", |b| { | ||
b.iter(|| kdtree.within(&point.0, 0.1, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
fn bench_within_2k_data_02_radius(c: &mut Criterion) { | ||
let len = 2000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_within_2k_data_02_radius", |b| { | ||
b.iter(|| kdtree.within(&point.0, 0.2, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
fn bench_within_unsorted_2k_data_01_radius(c: &mut Criterion) { | ||
let len = 2000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_within_unsorted_2k_data_01_radius", |b| { | ||
b.iter(|| kdtree.within_unsorted(&point.0, 0.1, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
fn bench_within_unsorted_2k_data_02_radius(c: &mut Criterion) { | ||
let len = 2000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_within_unsorted_2k_data_02_radius", |b| { | ||
b.iter(|| kdtree.within_unsorted(&point.0, 0.2, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
fn bench_within_count_2k_data_01_radius(c: &mut Criterion) { | ||
let len = 2000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_within_count_2k_data_01_radius", |b| { | ||
b.iter(|| kdtree.within_count(&point.0, 0.1, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
fn bench_within_count_2k_data_02_radius(c: &mut Criterion) { | ||
let len = 2000usize; | ||
let point = rand_data(); | ||
let mut points = vec![]; | ||
let mut kdtree = KdTree::with_capacity(3, 16); | ||
for _ in 0..len { | ||
points.push(rand_data()); | ||
} | ||
for i in 0..points.len() { | ||
kdtree.add(&points[i].0, points[i].1).unwrap(); | ||
} | ||
c.bench_function("bench_within_count_2k_data_02_radius", |b| { | ||
b.iter(|| kdtree.within_count(&point.0, 0.2, &squared_euclidean).unwrap()); | ||
}); | ||
} | ||
|
||
criterion_group!( | ||
benches, | ||
bench_add_to_kdtree_with_1k_3d_points, | ||
bench_nearest_from_kdtree_with_1k_3d_points, | ||
bench_within_2k_data_01_radius, | ||
bench_within_2k_data_02_radius, | ||
bench_within_unsorted_2k_data_01_radius, | ||
bench_within_unsorted_2k_data_02_radius, | ||
bench_within_count_2k_data_01_radius, | ||
bench_within_count_2k_data_02_radius, | ||
); | ||
|
||
criterion_main!(benches); |