Skip to content

A safe, transparent way to share and deploy scikit-learn models.

License

Notifications You must be signed in to change notification settings

mlrequest/sklearn-json

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sklearn-json

Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.

Why sklearn-json?

Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provides a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/.

sklearn-json is a safe and transparent solution for exporting scikit-learn model files.

Safe

Export model files to 100% JSON which cannot execute code on deserialization.

Transparent

Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.

Getting Started

sklearn-json makes exporting model files to JSON simple.

Install

pip install sklearn-json

Example Usage

import sklearn_json as skljson
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)

skljson.to_json(model, file_name)
deserialized_model = skljson.from_json(file_name)

deserialized_model.predict(X)

Features

The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to [email protected].

sklearn-json requires scikit-learn >= 0.21.3.

Supported scikit-learn Models

  • Classification

    • sklearn.linear_model.LogisticRegression
    • sklearn.linear_model.Perceptron
    • sklearn.discriminant_analysis.LinearDiscriminantAnalysis
    • sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
    • sklearn.svm.SVC
    • sklearn.naive_bayes.GaussianNB
    • sklearn.naive_bayes.MultinomialNB
    • sklearn.naive_bayes.ComplementNB
    • sklearn.naive_bayes.BernoulliNB
    • sklearn.tree.DecisionTreeClassifier
    • sklearn.ensemble.RandomForestClassifier
    • sklearn.ensemble.GradientBoostingClassifier
    • sklearn.neural_network.MLPClassifier
  • Regression

    • sklearn.linear_model.LinearRegression
    • sklearn.linear_model.Ridge
    • sklearn.linear_model.Lasso
    • sklearn.svm.SVR
    • sklearn.tree.DecisionTreeRegressor
    • sklearn.ensemble.RandomForestRegressor
    • sklearn.ensemble.GradientBoostingRegressor
    • sklearn.neural_network.MLPRegressor

About

A safe, transparent way to share and deploy scikit-learn models.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages