Skip to content

louisbrulenaudet/lemone-embed

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation

Python License Maintainer

This series is made up of 7 models, 3 basic models of different sizes trained on 1 epoch, 3 models trained on 2 epochs making up the Boost series and a Pro model with a non-Roberta architecture.

This sentence transformers model, specifically designed for French taxation, has been fine-tuned on a dataset comprising 43 million tokens, integrating a blend of semi-synthetic and fully synthetic data generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation.

The model is tailored to meet the specific demands of information retrieval across large-scale tax-related corpora, supporting the implementation of production-ready Retrieval-Augmented Generation (RAG) applications. Its primary purpose is to enhance the efficiency and accuracy of legal processes in the taxation domain, with an emphasis on delivering consistent performance in real-world settings, while also contributing to advancements in legal natural language processing research.

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Developed by: Louis BrulĂ© Naudet
  • Funded by: Microsoft for Startups
  • Shared by: Louis BrulĂ© Naudet
  • Model type: Sentence Transformers
  • Language(s) (NLP): FR
  • License: Apache 2
  • Finetuned from model: Alibaba-NLP/gte-multilingual-base

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the đŸ€— Hub
model = SentenceTransformer("louisbrulenaudet/lemone-gte-embed-max")
# Run inference
sentences = [
    "Exposer les modalités de dérogation au secret fiscal autorisant le juge à demander des documents fiscaux nécessaires pour résoudre un litige, en vertu de l'article L. 143 du Livre des Procédures Fiscales.",
    "ConformĂ©ment aux dispositions de l'article L. 143 du Livre des ProcĂ©dures Fiscales, le secret fiscal peut ĂȘtre levĂ© dans le cadre d'un litige par dĂ©cision du juge. Cette mesure vise Ă  autoriser la prĂ©sentation de documents fiscaux, jugĂ©s utiles par le magistrat pour trancher une affaire. La levĂ©e de ce secret est toutefois soumise Ă  une interprĂ©tation stricte, de sorte que seuls les documents rĂ©ellement susceptibles d'Ă©clairer le juge sur l'Ă©tendue du prĂ©judice des individus impliquĂ©s peuvent ĂȘtre divulguĂ©s. Les renseignements qui n'ont de pertinence que pour des questions pĂ©riphĂ©riques de la procĂ©dure ou qui se rapportent uniquement Ă  l'application d'un jugement dĂ©jĂ  prononcĂ© sont exclus de cette possibilitĂ© de communication.",
    "Selon les dispositions du Bulletin officiel des finances publiques-instructions administratives, spĂ©cifiquement le BOI-DJC-SECR-10-20-50, le procureur de la RĂ©publique dĂ©tient le droit, dans le contexte de toute investigation judiciaire, qu'elle relĂšve d'une enquĂȘte de flagrance, prĂ©liminaire ou autre, de solliciter des renseignements ou documents essentiels Ă  l'enquĂȘte auprĂšs de l'administration fiscale. Cette sollicitation peut ĂȘtre adressĂ©e directement ou via un officier de police judiciaire agissant sur une rĂ©quisition du procureur. ConformĂ©ment Ă  l'article L.141 A du Livre des procĂ©dures fiscales, le secret fiscal ne constitue pas un frein lĂ©gal Ă  la transmission des informations ou documents exigĂ©s par le procureur.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9737
cosine_accuracy@3 0.9917
cosine_accuracy@5 0.9936
cosine_accuracy@10 0.9968
cosine_precision@1 0.9737
cosine_precision@3 0.3306
cosine_precision@5 0.1987
cosine_precision@10 0.0997
cosine_recall@1 0.9737
cosine_recall@3 0.9917
cosine_recall@5 0.9936
cosine_recall@10 0.9968
cosine_ndcg@10 0.9865
cosine_mrr@10 0.9831
cosine_map@100 0.9832
dot_accuracy@1 0.9737
dot_accuracy@3 0.9917
dot_accuracy@5 0.9936
dot_accuracy@10 0.9968
dot_precision@1 0.9737
dot_precision@3 0.3306
dot_precision@5 0.1987
dot_precision@10 0.0997
dot_recall@1 0.9737
dot_recall@3 0.9917
dot_recall@5 0.9936
dot_recall@10 0.9968
dot_ndcg@10 0.9865
dot_mrr@10 0.9831
dot_map@100 0.9832

Training Details

Training Dataset

  • Size: 303,863 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 27 tokens
    • mean: 51.44 tokens
    • max: 137 tokens
    • min: 39 tokens
    • mean: 197.8 tokens
    • max: 1607 tokens
    • min: 48 tokens
    • mean: 224.41 tokens
    • max: 2735 tokens
  • Loss: CachedGISTEmbedLoss with these parameters:

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 5.517 kWh
  • Carbon Emitted: 2.036 kg of CO2
  • Hours Used: 9.954 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA H100 NVL
  • CPU Model: AMD EPYC 9V84 96-Core Processor
  • RAM Size: 314.68 GB

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

If you use this code in your research, please use the following BibTeX entry.

@misc{louisbrulenaudet2024,
  author =       {Louis Brulé Naudet},
  title =        {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation},
  year =         {2024}
  howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-embed-pro}},
}

Feedback

If you have any feedback, please reach out at [email protected].