English | 简体中文
量化是一种流行的模型压缩方法,量化后的模型拥有更小的体积和更快的推理速度. FastDeploy基于PaddleSlim, 集成了一键模型量化的工具, 同时, FastDeploy支持部署量化后的模型, 帮助用户实现推理加速.
当前,FastDeploy中多个推理后端可以在不同硬件上支持量化模型的部署. 支持情况如下:
硬件/推理后端 | ONNX Runtime | Paddle Inference | TensorRT |
---|---|---|---|
CPU | 支持 | 支持 | |
GPU | 支持 |
基于PaddleSlim, 目前FastDeploy提供的的量化方法有量化蒸馏训练和离线量化, 量化蒸馏训练通过模型训练来获得量化模型, 离线量化不需要模型训练即可完成模型的量化. FastDeploy 对两种方式产出的量化模型均能部署.
两种方法的主要对比如下表所示:
量化方法 | 量化过程耗时 | 量化模型精度 | 模型体积 | 推理速度 |
---|---|---|---|---|
离线量化 | 无需训练,耗时短 | 比量化蒸馏训练稍低 | 两者一致 | 两者一致 |
量化蒸馏训练 | 需要训练,耗时稍高 | 较未量化模型有少量损失 | 两者一致 | 两者一致 |
Fastdeploy基于PaddleSlim, 为用户提供了一键模型量化的工具,请参考如下文档进行模型量化.
- FastDeploy 一键模型量化 当用户获得产出的量化模型之后,即可以使用FastDeploy来部署量化模型.
目前, FastDeploy已支持的模型量化如下表所示:
模型 | 推理后端 | 部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 mAP | INT8 mAP | 量化方式 |
---|---|---|---|---|---|---|---|---|
YOLOv5s | TensorRT | GPU | 8.79 | 5.17 | 1.70 | 37.6 | 36.6 | 量化蒸馏训练 |
YOLOv5s | ONNX Runtime | CPU | 176.34 | 92.95 | 1.90 | 37.6 | 33.1 | 量化蒸馏训练 |
YOLOv5s | Paddle Inference | CPU | 217.05 | 133.31 | 1.63 | 37.6 | 36.8 | 量化蒸馏训练 |
YOLOv6s | TensorRT | GPU | 8.60 | 5.16 | 1.67 | 42.5 | 40.6 | 量化蒸馏训练 |
YOLOv6s | ONNX Runtime | CPU | 338.60 | 128.58 | 2.60 | 42.5 | 36.1 | 量化蒸馏训练 |
YOLOv6s | Paddle Inference | CPU | 356.62 | 125.72 | 2.84 | 42.5 | 41.2 | 量化蒸馏训练 |
YOLOv7 | TensorRT | GPU | 24.57 | 9.40 | 2.61 | 51.1 | 50.8 | 量化蒸馏训练 |
YOLOv7 | ONNX Runtime | CPU | 976.88 | 462.69 | 2.11 | 51.1 | 42.5 | 量化蒸馏训练 |
YOLOv7 | Paddle Inference | CPU | 1022.55 | 490.87 | 2.08 | 51.1 | 46.3 | 量化蒸馏训练 |
上表中的数据, 为模型量化前后,在FastDeploy部署的Runtime推理性能.
- 测试数据为COCO2017验证集中的图片.
- 推理时延为在不同Runtime上推理的时延, 单位是毫秒.
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
模型 | 推理后端 | 部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 mAP | INT8 mAP | 量化方式 |
---|---|---|---|---|---|---|---|---|
ppyoloe_crn_l_300e_coco | TensorRT | GPU | 24.52 | 11.53 | 2.13 | 51.4 | 50.7 | 量化蒸馏训练 |
ppyoloe_crn_l_300e_coco | ONNX Runtime | CPU | 1085.62 | 457.56 | 2.37 | 51.4 | 50.0 | 量化蒸馏训练 |
上表中的数据, 为模型量化前后,在FastDeploy部署的Runtime推理性能.
- 测试图片为COCO val2017中的图片.
- 推理时延为在不同Runtime上推理的时延, 单位是毫秒.
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.
模型 | 推理后端 | 部署硬件 | FP32推理时延 | INT8推理时延 | 加速比 | FP32 Top1 | INT8 Top1 | 量化方式 |
---|---|---|---|---|---|---|---|---|
ResNet50_vd | ONNX Runtime | CPU | 77.20 | 40.08 | 1.93 | 79.12 | 78.87 | 离线量化 |
ResNet50_vd | TensorRT | GPU | 3.70 | 1.80 | 2.06 | 79.12 | 79.06 | 离线量化 |
MobileNetV1_ssld | ONNX Runtime | CPU | 30.99 | 10.24 | 3.03 | 77.89 | 75.09 | 离线量化 |
MobileNetV1_ssld | TensorRT | GPU | 1.80 | 0.58 | 3.10 | 77.89 | 76.86 | 离线量化 |
上表中的数据, 为模型量化前后,在FastDeploy部署的Runtime推理性能.
- 测试数据为ImageNet-2012验证集中的图片.
- 推理时延为在不同Runtime上推理的时延, 单位是毫秒.
- CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.