forked from Traumflug/Teacup_Firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
heater.c
548 lines (483 loc) · 17 KB
/
heater.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
#include "heater.h"
/** \file
\brief Manage heaters
*/
#include <stdlib.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include "arduino.h"
#include "debug.h"
#include "temp.h"
#include "pinio.h"
#include "crc.h"
#ifndef EXTRUDER
#include "sersendf.h"
#endif
/// \struct heater_definition_t
/// \brief simply holds pinout data- port, pin, pwm channel if used
typedef struct {
volatile uint8_t *heater_port; ///< pointer to port. DDR is inferred from this pointer too
uint8_t heater_pin; ///< heater pin, not masked. eg for PB3 enter '3' here, or PB3_PIN or similar
volatile uint8_t *heater_pwm; ///< pointer to 8-bit PWM register, eg OCR0A (8-bit) or ORC3L (low byte, 16-bit)
} heater_definition_t;
#undef DEFINE_HEATER
/// \brief helper macro to fill heater definition struct from config.h
#define DEFINE_HEATER(name, pin, pwm) { &(pin ## _WPORT), pin ## _PIN, \
pwm ? (pin ## _PWM) : NULL},
static const heater_definition_t heaters[NUM_HEATERS] =
{
#include "config_wrapper.h"
};
#undef DEFINE_HEATER
/**
\var heaters_pid
\brief this struct holds the heater PID factors
PID is a fascinating way to control any closed loop control, combining the error (P), cumulative error (I) and rate at which we're approacing the setpoint (D) in such a way that when correctly tuned, the system will achieve target temperature quickly and with little to no overshoot
At every sample, we calculate \f$OUT = k_P (S - T) + k_I \int (S - T) + k_D \frac{dT}{dt}\f$ where S is setpoint and T is temperature.
The three factors kP, kI, kD are chosen to give the desired behaviour given the dynamics of the system.
See http://www.embedded.com/design/prototyping-and-development/4211211/PID-without-a-PhD for the full story
*/
struct {
int32_t p_factor; ///< scaled P factor: mibicounts/qc
int32_t i_factor; ///< scaled I factor: mibicounts/(qC*qs)
int32_t d_factor; ///< scaled D factor: mibicounts/(qc/(TH_COUNT*qs))
int16_t i_limit; ///< scaled I limit, such that \f$-i_{limit} < i_{factor} < i_{limit}\f$
} heaters_pid[NUM_HEATERS];
/// \brief this struct holds the runtime heater data- PID integrator history, temperature history, sanity checker
struct {
int16_t heater_i; ///< integrator, \f$-i_{limit} < \sum{4*eC*\Delta t} < i_{limit}\f$
uint16_t temp_history[TH_COUNT]; ///< store last TH_COUNT readings in a ring, so we can smooth out our differentiator
uint8_t temp_history_pointer; ///< pointer to last entry in ring
#ifdef HEATER_SANITY_CHECK
uint16_t sanity_counter; ///< how long things haven't seemed sane
uint16_t sane_temperature; ///< a temperature we consider sane given the heater settings
#endif
uint8_t heater_output; ///< this is the PID value we eventually send to the heater
} heaters_runtime[NUM_HEATERS];
#ifdef BANG_BANG
#define HEATER_THRESHOLD ((BANG_BANG_ON + BANG_BANG_OFF) / 2)
#else
#define HEATER_THRESHOLD 8
#endif
/// default scaled P factor, equivalent to 8.0 counts/qC or 32 counts/C
#define DEFAULT_P 8192
/// default scaled I factor, equivalent to 0.5 counts/(qC*qs) or 8 counts/C*s
#define DEFAULT_I 512
/// default scaled D factor, equivalent to 24 counts/(qc/(TH_COUNT*qs)) or 192 counts/(C/s)
#define DEFAULT_D 24576
/// default scaled I limit, equivalent to 384 qC*qs, or 24 C*s
#define DEFAULT_I_LIMIT 384
#ifdef EECONFIG
/// this lives in the eeprom so we can save our PID settings for each heater
typedef struct {
int32_t EE_p_factor;
int32_t EE_i_factor;
int32_t EE_d_factor;
int16_t EE_i_limit;
uint16_t crc; ///< crc so we can use defaults if eeprom data is invalid
} EE_factor;
EE_factor EEMEM EE_factors[NUM_HEATERS];
#endif /* EECONFIG */
/// \brief initialise heater subsystem
/// Set directions, initialise PWM timers, read PID factors from eeprom, etc
void heater_init() {
heater_t i;
// setup PWM timers: fast PWM
// Warning 2012-01-11: these are not consistent across all AVRs
TCCR0A = MASK(WGM01) | MASK(WGM00);
// PWM frequencies in TCCR0B, see page 108 of the ATmega644 reference.
TCCR0B = MASK(CS00); // F_CPU / 256 (about 78(62.5) kHz on a 20(16) MHz chip)
#ifndef FAST_PWM
TCCR0B = MASK(CS00) | MASK(CS02); // F_CPU / 256 / 1024 (about 76(61) Hz)
#endif
TIMSK0 = 0;
OCR0A = 0;
OCR0B = 0;
// timer 1 is used for stepping
TCCR2A = MASK(WGM21) | MASK(WGM20);
// PWM frequencies in TCCR2B, see page 156 of the ATmega644 reference.
TCCR2B = MASK(CS20); // F_CPU / 256 (about 78(62.5) kHz on a 20(16) MHz chip)
#ifndef FAST_PWM
TCCR2B = MASK(CS20) | MASK(CS21) | MASK(CS22); // F_CPU / 256 / 1024
#endif
TIMSK2 = 0;
OCR2A = 0;
OCR2B = 0;
#ifdef TCCR3A
TCCR3A = MASK(WGM30);
TCCR3B = MASK(WGM32) | MASK(CS30);
TIMSK3 = 0;
OCR3A = 0;
OCR3B = 0;
#endif
#ifdef TCCR4A
#ifdef TIMER4_IS_10_BIT
// ATmega16/32U4 fourth timer is a special 10 bit timer
TCCR4A = MASK(PWM4A) | MASK(PWM4B) ; // enable A and B
TCCR4C = MASK(PWM4D); // and D
TCCR4D = MASK(WGM40); // Phase correct
TCCR4B = MASK(CS40); // no prescaler
#ifndef FAST_PWM
TCCR4B = MASK(CS40) | MASK(CS42) | MASK(CS43); // 16 MHz / 1024 / 256
//TCCR4B = MASK(CS40) | MASK(CS41) | MASK(CS43); // 16 MHz / 4096 / 256
#endif
TC4H = 0; // clear high bits
OCR4C = 0xff; // 8 bit max count at top before reset
#else
TCCR4A = MASK(WGM40);
TCCR4B = MASK(WGM42) | MASK(CS40);
#endif
TIMSK4 = 0;
OCR4A = 0;
OCR4B = 0;
#ifdef OCR4D
OCR4D = 0;
#endif
#endif
#ifdef TCCR5A
TCCR5A = MASK(WGM50);
TCCR5B = MASK(WGM52) | MASK(CS50);
TIMSK5 = 0;
OCR5A = 0;
OCR5B = 0;
#endif
// setup pins
for (i = 0; i < NUM_HEATERS; i++) {
if (heaters[i].heater_pwm) {
*heaters[i].heater_pwm = 0;
// this is somewhat ugly too, but switch() won't accept pointers for reasons unknown
switch((uint16_t) heaters[i].heater_pwm) {
case (uint16_t) &OCR0A:
TCCR0A |= MASK(COM0A1);
break;
case (uint16_t) &OCR0B:
TCCR0A |= MASK(COM0B1);
break;
case (uint16_t) &OCR2A:
TCCR2A |= MASK(COM2A1);
break;
case (uint16_t) &OCR2B:
TCCR2A |= MASK(COM2B1);
break;
#ifdef TCCR3A
case (uint16_t) &OCR3AL:
TCCR3A |= MASK(COM3A1);
break;
case (uint16_t) &OCR3BL:
TCCR3A |= MASK(COM3B1);
break;
#ifdef COM3C1
case (uint16_t) &OCR3CL:
TCCR3A |= MASK(COM3C1);
break;
#endif
#endif
#ifdef TCCR4A
#if defined (OCR4AL)
case (uint16_t) &OCR4AL:
TCCR4A |= MASK(COM4A1);
break;
case (uint16_t) &OCR4BL:
TCCR4A |= MASK(COM4B1);
break;
case (uint16_t) &OCR4CL:
TCCR4A |= MASK(COM4C1);
break;
#else
// 10 bit timer
case (uint16_t) &OCR4A:
TCCR4A |= MASK(COM4A1);
break;
case (uint16_t) &OCR4B:
TCCR4A |= MASK(COM4B1);
break;
#ifdef OCR4D
case (uint16_t) &OCR4D:
TCCR4C |= MASK(COM4D1);
break;
#endif
#endif
#endif
#ifdef TCCR5A
case (uint16_t) &OCR5AL:
TCCR5A |= MASK(COM5A1);
break;
case (uint16_t) &OCR5BL:
TCCR5A |= MASK(COM5B1);
break;
case (uint16_t) &OCR5CL:
TCCR5A |= MASK(COM5C1);
break;
#endif
}
}
#ifdef HEATER_SANITY_CHECK
// 0 is a "sane" temperature when we're trying to cool down
heaters_runtime[i].sane_temperature = 0;
#endif
#ifndef BANG_BANG
#ifdef EECONFIG
// read factors from eeprom
heaters_pid[i].p_factor =
eeprom_read_dword((uint32_t *) &EE_factors[i].EE_p_factor);
heaters_pid[i].i_factor =
eeprom_read_dword((uint32_t *) &EE_factors[i].EE_i_factor);
heaters_pid[i].d_factor =
eeprom_read_dword((uint32_t *) &EE_factors[i].EE_d_factor);
heaters_pid[i].i_limit =
eeprom_read_word((uint16_t *) &EE_factors[i].EE_i_limit);
if (crc_block(&heaters_pid[i].p_factor, 14) != eeprom_read_word((uint16_t *) &EE_factors[i].crc))
#endif /* EECONFIG */
{
heaters_pid[i].p_factor = DEFAULT_P;
heaters_pid[i].i_factor = DEFAULT_I;
heaters_pid[i].d_factor = DEFAULT_D;
heaters_pid[i].i_limit = DEFAULT_I_LIMIT;
}
#endif /* BANG_BANG */
}
// set all heater pins to output
do {
#undef DEFINE_HEATER
#define DEFINE_HEATER(name, pin, pwm) WRITE(pin, 0); SET_OUTPUT(pin);
#include "config_wrapper.h"
#undef DEFINE_HEATER
} while (0);
}
/** \brief run heater PID algorithm
\param h which heater we're running the loop for
\param type which temp sensor type this heater is attached to
\param current_temp the temperature that the associated temp sensor is reporting
\param target_temp the temperature we're trying to achieve
*/
void heater_tick(heater_t h, temp_type_t type, uint16_t current_temp, uint16_t target_temp) {
// Static, so it's not mandatory to calculate a new value, see BANG_BANG.
static uint8_t pid_output;
#ifndef BANG_BANG
int16_t heater_p;
int16_t heater_d;
int16_t t_error = target_temp - current_temp;
#endif /* BANG_BANG */
if (h >= NUM_HEATERS)
return;
if (target_temp == 0) {
heater_set(h, 0);
return;
}
#ifndef BANG_BANG
heaters_runtime[h].temp_history[heaters_runtime[h].temp_history_pointer++] = current_temp;
heaters_runtime[h].temp_history_pointer &= (TH_COUNT - 1);
// PID stuff
// proportional
heater_p = t_error; // Units: qC where 4qC=1C
// integral
heaters_runtime[h].heater_i += t_error; // Units: qC*qs where 16qC*qs=1C*s
// prevent integrator wind-up
if (heaters_runtime[h].heater_i > heaters_pid[h].i_limit)
heaters_runtime[h].heater_i = heaters_pid[h].i_limit;
else if (heaters_runtime[h].heater_i < -heaters_pid[h].i_limit)
heaters_runtime[h].heater_i = -heaters_pid[h].i_limit;
// derivative. Units: qC/(TH_COUNT*qs) where 1C/s=TH_COUNT*4qC/4qs=8qC/qs)
// note: D follows temp rather than error so there's no large derivative when the target changes
heater_d = heaters_runtime[h].temp_history[heaters_runtime[h].temp_history_pointer] - current_temp;
// combine factors
int32_t pid_output_intermed = ( // Units: counts
(
(((int32_t) heater_p) * heaters_pid[h].p_factor) +
(((int32_t) heaters_runtime[h].heater_i) * heaters_pid[h].i_factor) +
(((int32_t) heater_d) * heaters_pid[h].d_factor)
) / PID_SCALE
);
// rebase and limit factors
if (pid_output_intermed > 255) {
if (t_error > 0)
heaters_runtime[h].heater_i -= t_error; // un-integrate
pid_output = 255;
}
else if (pid_output_intermed < 0) {
if (t_error < 0)
heaters_runtime[h].heater_i -= t_error; // un-integrate
pid_output = 0;
}
else
pid_output = pid_output_intermed & 0xFF;
#ifdef DEBUG
if (DEBUG_PID && (debug_flags & DEBUG_PID))
sersendf_P(PSTR("T{E:%d, P:%d * %ld = %ld / I:%d * %ld = %ld / D:%d * %ld = %ld # O: %ld = %u}\n"), t_error, heater_p, heaters_pid[h].p_factor, (int32_t) heater_p * heaters_pid[h].p_factor / PID_SCALE, heaters_runtime[h].heater_i, heaters_pid[h].i_factor, (int32_t) heaters_runtime[h].heater_i * heaters_pid[h].i_factor / PID_SCALE, heater_d, heaters_pid[h].d_factor, (int32_t) heater_d * heaters_pid[h].d_factor / PID_SCALE, pid_output_intermed, pid_output);
#endif
#else
if (current_temp >= target_temp + (TEMP_HYSTERESIS))
pid_output = BANG_BANG_OFF;
else if (current_temp <= target_temp - (TEMP_HYSTERESIS))
pid_output = BANG_BANG_ON;
// else keep pid_output
#endif
#ifdef HEATER_SANITY_CHECK
// check heater sanity
// implementation is a moving window with some slow-down to compensate for thermal mass
if (target_temp > (current_temp + (TEMP_HYSTERESIS*4))) {
// heating
if (current_temp > heaters_runtime[h].sane_temperature)
// hotter than sane- good since we're heating unless too hot
heaters_runtime[h].sane_temperature = current_temp;
else {
if (heaters_runtime[h].sanity_counter < 40)
heaters_runtime[h].sanity_counter++;
else {
heaters_runtime[h].sanity_counter = 0;
// ratchet up expected temp
heaters_runtime[h].sane_temperature++;
}
}
// limit to target, so if we overshoot by too much for too long an error is flagged
if (heaters_runtime[h].sane_temperature > target_temp)
heaters_runtime[h].sane_temperature = target_temp;
}
else if (target_temp < (current_temp - (TEMP_HYSTERESIS*4))) {
// cooling
if (current_temp < heaters_runtime[h].sane_temperature)
// cooler than sane- good since we're cooling
heaters_runtime[h].sane_temperature = current_temp;
else {
if (heaters_runtime[h].sanity_counter < 125)
heaters_runtime[h].sanity_counter++;
else {
heaters_runtime[h].sanity_counter = 0;
// ratchet down expected temp
heaters_runtime[h].sane_temperature--;
}
}
// if we're at or below 60 celsius, don't freak out if we can't drop any more.
if (current_temp <= 240)
heaters_runtime[h].sane_temperature = current_temp;
// limit to target, so if we don't cool down for too long an error is flagged
else if (heaters_runtime[h].sane_temperature < target_temp)
heaters_runtime[h].sane_temperature = target_temp;
}
// we're within HYSTERESIS of our target
else {
heaters_runtime[h].sane_temperature = current_temp;
heaters_runtime[h].sanity_counter = 0;
}
// compare where we're at to where we should be
if (labs((int16_t)(current_temp - heaters_runtime[h].sane_temperature)) > (TEMP_HYSTERESIS*4)) {
// no change, or change in wrong direction for a long time- heater is broken!
pid_output = 0;
sersendf_P(PSTR("!! heater %d or its temp sensor broken - temp is %d.%dC, target is %d.%dC, didn't reach %d.%dC in %d0 milliseconds\n"), h, current_temp >> 2, (current_temp & 3) * 25, target_temp >> 2, (target_temp & 3) * 25, heaters_runtime[h].sane_temperature >> 2, (heaters_runtime[h].sane_temperature & 3) * 25, heaters_runtime[h].sanity_counter);
}
#endif /* HEATER_SANITY_CHECK */
heater_set(h, pid_output);
}
/** \brief manually set PWM output
\param index the heater we're setting the output for
\param value the PWM value to write
anything done by this function is overwritten by heater_tick above if the heater has an associated temp sensor
*/
void heater_set(heater_t index, uint8_t value) {
if (index >= NUM_HEATERS)
return;
heaters_runtime[index].heater_output = value;
if (heaters[index].heater_pwm) {
*(heaters[index].heater_pwm) = value;
#ifdef DEBUG
if (DEBUG_PID && (debug_flags & DEBUG_PID))
sersendf_P(PSTR("PWM{%u = %u}\n"), index, *heaters[index].heater_pwm);
#endif
}
else {
if (value >= HEATER_THRESHOLD)
*(heaters[index].heater_port) |= MASK(heaters[index].heater_pin);
else
*(heaters[index].heater_port) &= ~MASK(heaters[index].heater_pin);
}
if (value)
power_on();
}
/** \brief check wether all heaters are off
*/
uint8_t heaters_all_zero() {
uint8_t i;
for (i = 0; i < NUM_HEATERS; i++) {
if (heaters_runtime[i].heater_output)
return 0;
}
return 255;
}
/** \brief turn off all heaters
for emergency stop
*/
uint8_t heaters_all_off() {
uint8_t i;
for (i = 0; i < NUM_HEATERS; i++) {
if (heaters_runtime[i].heater_output > 0)
return 0;
}
return 255;
}
#ifdef EECONFIG
/** \brief set heater P factor
\param index heater to change factor for
\param p scaled P factor
*/
void pid_set_p(heater_t index, int32_t p) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].p_factor = p;
#endif /* BANG_BANG */
}
/** \brief set heater I factor
\param index heater to change I factor for
\param i scaled I factor
*/
void pid_set_i(heater_t index, int32_t i) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].i_factor = i;
#endif /* BANG_BANG */
}
/** \brief set heater D factor
\param index heater to change D factor for
\param d scaled D factor
*/
void pid_set_d(heater_t index, int32_t d) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].d_factor = d;
#endif /* BANG_BANG */
}
/** \brief set heater I limit
\param index heater to set I limit for
\param i_limit scaled I limit
*/
void pid_set_i_limit(heater_t index, int32_t i_limit) {
#ifndef BANG_BANG
if (index >= NUM_HEATERS)
return;
heaters_pid[index].i_limit = i_limit;
#endif /* BANG_BANG */
}
/// \brief Write PID factors to eeprom
void heater_save_settings() {
#ifndef BANG_BANG
heater_t i;
for (i = 0; i < NUM_HEATERS; i++) {
eeprom_write_dword((uint32_t *) &EE_factors[i].EE_p_factor, heaters_pid[i].p_factor);
eeprom_write_dword((uint32_t *) &EE_factors[i].EE_i_factor, heaters_pid[i].i_factor);
eeprom_write_dword((uint32_t *) &EE_factors[i].EE_d_factor, heaters_pid[i].d_factor);
eeprom_write_word((uint16_t *) &EE_factors[i].EE_i_limit, heaters_pid[i].i_limit);
eeprom_write_word((uint16_t *) &EE_factors[i].crc, crc_block(&heaters_pid[i].p_factor, 14));
}
#endif /* BANG_BANG */
}
#endif /* EECONFIG */
#ifndef EXTRUDER
/** \brief send heater debug info to host
\param i index of heater to send info for
*/
void heater_print(uint16_t i) {
sersendf_P(PSTR("P:%ld I:%ld D:%ld Ilim:%u crc:%u "), heaters_pid[i].p_factor, heaters_pid[i].i_factor, heaters_pid[i].d_factor, heaters_pid[i].i_limit, crc_block(&heaters_pid[i].p_factor, 14));
}
#endif