We provide the config files for 3DNBF: 3D-Aware Neural Body Fitting for Occlusion Robust 3D Human Pose Estimation. The project is based on mmhuman3d codebase. Please also refer to mmhuman3d v0.5.0 if you have and confusion about the code.
@Inproceedings{zhang2023nbf,
author = {Zhang, Yi and
Ji, Pengliang and
Kortylewski, Adam and
Wang, Angtian and
Mei, Jieru and
Yuille, Alan L},
title = {{3D-Aware Neural Body Fitting for Occlusion Robust 3D Human Pose Estimation}},
booktitle = {The IEEE/CVF International Conference on Computer Vision},
year = {2023}
}
Please refer to install.md for installation.
Download data and unzip to $ROOT
.
This includes pretrained models, preprocessed and other necessary files.
- SMPL v1.0 is used in our experiments.
- Neutral model can be downloaded from SMPLify.
- All body models have to be renamed in
SMPL_{GENDER}.pkl
format.
For example,mv basicModel_neutral_lbs_10_207_0_v1.0.0.pkl SMPL_NEUTRAL.pkl
- J_regressor_extra.npy
- J_regressor_h36m.npy
- smpl_mean_params.npz
Download the above resources and arrange them in the following file structure:
mmhuman3d
├── mmhuman3d
├── docs
├── tests
├── tools
├── configs
└── data
└── body_models
├── J_regressor_extra.npy
├── J_regressor_h36m.npy
├── smpl_mean_params.npz
└── smpl
├── SMPL_FEMALE.pkl
├── SMPL_MALE.pkl
└── SMPL_NEUTRAL.pkl
Download the datasets from official websites. See original data preprocessing.
The final data/
folder should have this structure:
mmhuman3d
└── data
├── datasets
├── h36m
├── lspet
├── mpii
├── mpi_inf_3dhp
├── coco
├── pw3d
├── body_models
├── dataset_extras
├── pretrained
├── sample_params
├── static_fits
├── vposer_v1_0
└── preprocessed_datasets
├── eft_coco_all.npz
├── spin_mpi_inf_3dhp_train_new_correct.npz
├── eft_lspet.npz
├── eft_mpii.npz
├── spin_h36m_train_mosh.npz
├── ...
├── gmm_08.pkl
├── vertex_to_part.json
└── smpl_partSegmentation_mapping.pkl
Set the test_data
in the config, and run the following command
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_test.sh configs/3dnbf/resnet50_pare_w_coke_pw3d_step2.py exp/3dnbf/3dpw_advocc data/pretrained/3dnbf_r50.pth 4 --metrics pa-mpjpe mpjpe pckh
We provide a script to run all experiments,
bash tools/run_all_tasks.sh
To visualize the prediction, just set cfg.data.visualization.pipeline
to vis_pipeline
.
CUDA_VISIBLE_DEVICES=0 python tools/visualize_predictions.py --config configs/3dnbf/resnet50_pare_w_coke_pw3d_step2.py --output_file /path/to/result_keypoints.json --outdir /path/to/visualization
First perform a sliding window testing using OccludedHumanImageDataset
to wrap your test data in orig_cfg
, e.g. configs/pare/resnet50_pare_pw3d.py
. Set occ_size
and occ_stride
to be the same as in test_pipeline_occ
. Evaluate on this dataset gives the info of the sample with largest error under different metrics for each image result_occ_info_{mpjpe|pa-mpjpe|pckh}.json
. Set hparams.DATASET.occ_info_file
to these files will reconstruct the adversarially placed occlusion dataset.
original_dataset = dict(
type=dataset_type,
body_model=dict(
type='GenderedSMPL',
keypoint_src='h36m',
keypoint_dst='h36m',
model_path='data/body_models/smpl',
joints_regressor='data/body_models/J_regressor_h36m.npy'),
dataset_name='pw3d',
convention='h36m',
data_prefix='data',
pipeline=test_pipeline_occ,
ann_file='pw3d_test_w_kp2d_ds30_op.npz',
hparams=dict(
DATASETS_AND_RATIOS='h36m_mpii_lspet_coco_mpi-inf-3dhp_0.35_0.05_0.05_0.2_0.35',
FOCAL_LENGTH=5000.0,
IMG_RES=img_res,
eval_visible_joints=True))
test=dict(
type='OccludedHumanImageDataset',
orig_cfg=original_dataset,
# here occ_size and occ_stride are only used to calculate n_grid
# the actual occ_size and occ_stride are set in test_pipeline
occ_size=80,
occ_stride=40,
)
test=dict(
type=dataset_type,
body_model=dict(
type='GenderedSMPL',
keypoint_src='h36m',
keypoint_dst='h36m',
model_path='data/body_models/smpl',
joints_regressor='data/body_models/J_regressor_h36m.npy'),
dataset_name='pw3d',
convention='smpl_49',
data_prefix='data',
pipeline=test_pipeline_occ,
ann_file='pw3d_test_w_kp2d_ds30_op.npz',
hparams=dict(
DATASETS_AND_RATIOS='h36m_mpii_lspet_coco_mpi-inf-3dhp_0.35_0.05_0.05_0.2_0.35',
FOCAL_LENGTH=5000.0,
IMG_RES=img_res,
eval_visible_joints=True,
# occ_info_file is the output of `OccludedHumanImageDataset`
occ_info_file='exp/pare/3dpw_test_ds30_occ80stride40_pare_r50_grid/result_occ_info_mpjpe.json'
)
),
First, train on EFTCOCO for 100 epochs.
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_train.sh configs/3dnbf/resnet50_pare_w_coke_pw3d.py exp/3dnbf 4 --no-validate
Then, set load_from
in resnet50_pare_w_coke_pw3d_step2.py
to the checkpoint from the first stage and train on all datasets,
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_train.sh configs/3dnbf/resnet50_pare_w_coke_pw3d_step2.py exp/3dnbf_stage2 4 --no-validate
Place center cropped human images in data/datasets/demo
and run tools/create_test_dataset.py
to create dataset files which will be stored in data/preprocessed_datasets
.
Use the following script to run 3DNBF. In the config file, set data.test.dataset_name
and data.test.ann_file
accordingly. Results will be saved to $WORK_DIR/result_keypoints.json
.
You can run visualization afterwards.
CUDA_VISIBLE_DEVICES=0 python tools/test.py --config configs/3dnbf/resnet50_pare_w_coke_pw3d_demo.py --work-dir WORK_DIR --checkpoint CHECKPOINT --skip_eval
Example run of our demo:
python tools/create_test_dataset.py
CUDA_VISIBLE_DEVICES=0 python tools/test.py --config configs/3dnbf/resnet50_pare_w_coke_pw3d_demo.py --work-dir output --checkpoint data//pretrained/3dnbf_r50.pth --skip_eval
CUDA_VISIBLE_DEVICES=0 python tools/visualize_predictions.py --config configs/3dnbf/resnet50_pare_w_coke_pw3d_demo.py --output_file output/result_keypoints.json --outdir output/visualization