Skip to content

Commit

Permalink
Version 1.3.3 (#680)
Browse files Browse the repository at this point in the history
* make misc revisions

* note keras issue in docs/

* update n_iter docstring

* version 1.3.3
  • Loading branch information
dustinvtran authored Jun 16, 2017
1 parent 321d0de commit 7073198
Show file tree
Hide file tree
Showing 5 changed files with 9 additions and 6 deletions.
4 changes: 3 additions & 1 deletion docs/tex/troubleshooting.tex
Original file line number Diff line number Diff line change
Expand Up @@ -46,14 +46,16 @@ \subsubsection{Full Installation}
\item Neural networks are supported through three libraries:
\href{http://keras.io}{Keras} (>=1.0)
\begin{lstlisting}[language=JSON]
pip install keras
pip install keras==2.0.4
\end{lstlisting}
\href{https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim}{TensorFlow Slim}
(native in TensorFlow), and
\href{https://github.com/google/prettytensor}{PrettyTensor} (>=0.7.4)
\begin{lstlisting}[language=JSON]
pip install prettytensor
\end{lstlisting}
Note that for Keras 2.0.5 and beyond, all neural net layer transformations cannot be directly applied on random variables anymore. For example, if \texttt{x} is a \texttt{ed.RandomVariable} object, one must call \texttt{tf.convert_to_tensor} before applying it to a layer transformation, \texttt{Dense(256)(tf.convert_to_tensor(x))}.
See \href{https://github.com/fchollet/keras/issues/6979}{here} for more details.
\item Notebooks require
\href{http://jupyter.org}{Jupyter} (>=1.0.0)
\begin{lstlisting}[language=JSON]
Expand Down
3 changes: 1 addition & 2 deletions edward/inferences/gan_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,6 @@ def _build_optimizer(optimizer, global_step):
100, 0.9, staircase=True)
else:
learning_rate = 0.01
global_step = None

# Build optimizer.
if optimizer is None:
Expand All @@ -247,6 +246,6 @@ def _build_optimizer(optimizer, global_step):
else:
raise ValueError('Optimizer class not found:', optimizer)
elif not isinstance(optimizer, tf.train.Optimizer):
raise TypeError("Optimizer must be a str, tf.train.Optimizer, or None.")
raise TypeError("Optimizer must be str, tf.train.Optimizer, or None.")

return optimizer, global_step
5 changes: 4 additions & 1 deletion edward/inferences/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,10 @@ def initialize(self, n_iter=1000, n_print=None, scale=None, logdir=None,
Parameters
----------
n_iter : int, optional
Number of iterations for algorithm.
Number of iterations for algorithm when calling ``run()``.
Alternatively if controlling inference manually, it is the
expected number of calls to ``update()``; this number determines
tracking information during the print progress.
n_print : int, optional
Number of iterations for each print progress. To suppress print
progress, then specify 0. Default is ``int(n_iter / 100)``.
Expand Down
1 change: 0 additions & 1 deletion edward/inferences/variational_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,6 @@ def initialize(self, optimizer=None, var_list=None, use_prettytensor=False,
100, 0.9, staircase=True)
else:
learning_rate = 0.01
global_step = None

# Build optimizer.
if optimizer is None:
Expand Down
2 changes: 1 addition & 1 deletion edward/version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = '1.3.2'
__version__ = '1.3.3'

0 comments on commit 7073198

Please sign in to comment.