Skip to content

RoyaGhaennezhad/rtems-libbsd

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RTEMS LibBSD

Welcome to building LibBSD for RTEMS using Waf. This package is a library containing various parts of the FreeBSD kernel ported to RTEMS. The library replaces the networking port of FreeBSD in the RTEMS kernel sources. This package is designed to be updated from the FreeBSD kernel sources and contains more than just the networking code.

To build this package you need a current RTEMS tool set for your architecture, and a recent RTEMS kernel for your BSP configured with networking disabled built and installed. If you already have this you can skip to step 3 of the build procedure.

Building and Installing LibBSD

The following instructions show you how to build and install RTEMS Tools and RTEMS kernel for your BSP in separate paths. Using separate paths for the tools and BSPs lets you manage what you have installed. If you are happy with a single path you can use the same path in each stage.

The Waf build support for RTEMS requires you provide your BSP name as an architecture and BSP pair. You must provide both or Waf will generate an error message during the configure phase.

We will build an Xilinx Zynq QEMU BSP using the name arm/xilinx_zynq_a9_qemu. You can copy and paste the shell commands below to do this. The individual steps are explained afterwards.

sandbox="$PWD/sandbox"
mkdir sandbox
cd "$sandbox"
git clone git://git.rtems.org/rtems-source-builder.git
git clone git://git.rtems.org/rtems.git
git clone git://git.rtems.org/rtems-libbsd.git
cd "$sandbox"
cd rtems-source-builder/rtems
../source-builder/sb-set-builder --prefix="$sandbox/rtems/5" 5/rtems-arm
cd "$sandbox"
cd rtems
PATH="$sandbox/rtems/5/bin:$PATH" ./bootstrap
cd "$sandbox"
mkdir b-xilinx_zynq_a9_qemu
cd b-xilinx_zynq_a9_qemu
PATH="$sandbox/rtems/5/bin:$PATH" "$sandbox/rtems/configure" \
  --target=arm-rtems5 --prefix="$sandbox/rtems/5" \
  --disable-networking --enable-rtemsbsp=xilinx_zynq_a9_qemu
PATH="$sandbox/rtems/5/bin:$PATH" make
PATH="$sandbox/rtems/5/bin:$PATH" make install
cd "$sandbox"
cd rtems-libbsd
git submodule init
git submodule update rtems_waf
./waf configure --prefix="$sandbox/rtems/5" \
  --rtems-bsps=arm/xilinx_zynq_a9_qemu \
  --buildset=buildset/default.ini
./waf
./waf install
qemu-system-arm -no-reboot -serial null -serial mon:stdio -net none \
  -nographic -M xilinx-zynq-a9 -m 256M \
  -kernel build/arm-rtems5-xilinx_zynq_a9_qemu-default/selectpollkqueue01.exe
  1. Create a sandbox directory:
$ sandbox="$PWD/sandbox"
$ mkdir sandbox
  1. Clone the repositories:
$ cd "$sandbox"
$ git clone git://git.rtems.org/rtems-source-builder.git
$ git clone git://git.rtems.org/rtems.git
$ git clone git://git.rtems.org/rtems-libbsd.git
  1. Build and install the tools:
$ cd "$sandbox"
$ cd rtems-source-builder/rtems
$ ../source-builder/sb-set-builder --prefix="$sandbox/rtems/5" 5/rtems-arm
  1. Bootstrap the RTEMS sources:
$ cd "$sandbox"
$ cd rtems
$ PATH="$sandbox/rtems/5/bin:$PATH" ./bootstrap
  1. Build and install the RTEMS Board Support Packages (BSP) you want to use:
$ cd "$sandbox"
$ mkdir b-xilinx_zynq_a9_qemu
$ cd b-xilinx_zynq_a9_qemu
$ PATH="$sandbox/rtems/5/bin:$PATH" "$sandbox/rtems/configure" \
    --target=arm-rtems5 --prefix="$sandbox/rtems/5" \
    --disable-networking --enable-rtemsbsp=xilinx_zynq_a9_qemu
$ PATH="$sandbox/rtems/5/bin:$PATH" make
$ PATH="$sandbox/rtems/5/bin:$PATH" make install
  1. Populate the rtems_waf git submodule. Note, make sure you specify 'rtems_waf' or the FreeBSD kernel source will be cloned:
$ cd "$sandbox"
$ cd rtems-libbsd
$ git submodule init
$ git submodule update rtems_waf
  1. Run Waf's configure with your specific settings. In this case the path to the tools and RTEMS are provided on the command line and so do not need to be in your path or environment [1]. You can use '--rtems-archs=arm,sparc,i386' or '--rtems-bsps=arm/xilinx_zynq_a9_qemu,sparc/sis,i386/pc586' to build for more than BSP at a time. Note, you must provide the architecture and BSP as a pair. Providing just the BSP name will fail. This call also explicitly provides a buildset via the '--buildset=buildset/default.ini' option. If no buildset is provided the default one (which is the same as the one provided explicitly here) will be used. You can also provide multiple buildsets as a coma separated list or via multiple '--buildset=x' options.
$ cd "$sandbox"
$ cd rtems-libbsd
$ ./waf configure --prefix="$sandbox/rtems/5" \
    --rtems-bsps=arm/xilinx_zynq_a9_qemu \
    --buildset=buildset/default.ini
  1. Build and install. The LibBSD package will be installed into the prefix provided to configure:
$ cd "$sandbox"
$ cd rtems-libbsd
$ ./waf
$ ./waf install
  1. Run the tests on QEMU, for example using VDE:
$ qemu-system-arm -no-reboot -serial null -serial mon:stdio \
    -net nic,model=cadence_gem -net vde,id=vde0,sock=/tmp/vde1 \
    -nographic -M xilinx-zynq-a9 -m 256M \
    -kernel build/arm-rtems5-xilinx_zynq_a9_qemu/selectpollkqueue01.exe

[1] It is good practice to keep your environment as empty as possible. Setting paths to tools or specific values to configure or control a build is dangerous because settings can leak between different builds and change what you expect a build to do. The Waf tool used here lets you specify on the command line the tools and RTEMS paths and this is embedded in Waf's configuration information. If you have a few source trees working at any one time with different tool sets or configurations you can easly move between them safe in the knowledge that one build will not infect another.

Branches

  • master - branch intended for the RTEMS master which tracks the FreeBSD master branch. This branch must be used for libbsd development. Back ports to the 6-freebsd-12 are allowed.

  • 6-freebsd-12 - branch intended for RTEMS 6 which tracks the FreeBSD stable/12 branch. This branch is maintained and regular updates from FreeBSD are planned. It is recommended for production systems.

  • 5-freebsd-12 - branch belongs to the RTEMS 5 release. It is based on FreeBSD stable/12 branch. It is recommended for production systems that use RTEMS 5.

  • 5 - branch belongs to the RTEMS 5 release. It is based on a FreeBSD development version.

  • freebsd-9.3 - branch for some RTEMS version with a FreeBSD 9.3 baseline. This branch is unmaintained. It is recommended to update to RTEMS 5 or 6.

  • 4.11 - branch for the RTEMS 4.11 release series. This branch is unmaintained. It is recommended to update to RTEMS 5 or 6.

Updating RTEMS Waf Support

If you have a working libbsd repository and new changes to the rtems_waf submodule has been made, you will need update. A git status will indicate there are new commits with:

$ git status
    [ snip output ]
          modified:   rtems_waf (new commits)
    [ snip output ]

To update:

$ git submodule update rtems_waf

Please make sure you use the exact command or you might find you are cloning the whole of the FreeBSD source tree. If that happens simply git ^C and try again.

FreeBSD Kernel Options

You can set FreeBSD kernel options during build configuration with the --freebsd-option=a,b,c,... configuration command option. This is an advanced option and should only be used if you are familiar with the internals of the FreeBSD kernel and what these options do. Each of the comma separated options is converted to uppercase and passed as a compiler command line define (-D).

The options are listed in:

https://github.com/freebsd/freebsd/blob/master/sys/conf/NOTES

An example to turn on a verbose kernel boot, verbose sysinit and bus debugging configure with:

--freebsd-options=bootverbose,verbose_sysinit,bus_debug

To enable kernel internal consistency checking use:

--freebsd-options=invariants,invariant_support

Qemu and Networking

You can use the Qemu simulator to run a LibBSD based application and connect it to a virtual network on your host. You have to create a TAP virtual Ethernet interface for this:

sudo tunctl -p -t qtap -u $(whoami)
sudo ip link set dev qtap up
sudo ip addr add 169.254.1.1/16 dev qtap

You can show the interface state with the following command:

$ ip addr show qtap
27: qtap: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN group default qlen 1000
    link/ether 8e:50:a2:fb:e1:3b brd ff:ff:ff:ff:ff:ff
    inet 169.254.1.1/16 scope global qtap
       valid_lft forever preferred_lft forever

You may have to assign the interface to a firewall zone.

The Qemu command line varies by board support package, here is an example for the arm/xilinx_zynq_a9_qemu BSP:

qemu-system-arm -serial null -serial mon:stdio -nographic \
  -M xilinx-zynq-a9 -m 256M \
  -net tap,ifname=qtap,script=no,downscript=no \
  -net nic,model=cadence_gem,macaddr=0e:b0:ba:5e:ba:12 \
  -kernel build/arm-rtems5-xilinx_zynq_a9_qemu-default/media01.exe

After some seconds it will acquire a IPv4 link-local address, e.g.

info: cgem0: probing for an IPv4LL address
debug: cgem0: checking for 169.254.159.156

You can connect to the target via telnet for example:

$ telnet 169.254.159.156
Trying 169.254.159.156...
Connected to 169.254.159.156.
Escape character is '^]'.

RTEMS Shell on /dev/pty4. Use 'help' to list commands.
TLNT [/] #

SMP Requirements

In order to support EPOCH(9) a scheduler with thread pinning support is required. This is the case if you use the default scheduler configuration. EPOCH(9) is a central synchronization mechanism of the network stack.

Packages

No packages published

Languages

  • C 96.7%
  • Shell 0.6%
  • Python 0.5%
  • C++ 0.4%
  • Yacc 0.4%
  • Makefile 0.3%
  • Other 1.1%