Ring Artifact Correction in Photon-Counting Spectral CT Using a Convolutional Neural Network With Spectral Loss
This repo contains code acompanying Ring Artifact Correction in Photon-Counting Spectral CT Using a Convolutional Neural Network With Spectral Loss.
Install necessary packages via
pip install -r requirements.txt
In addtion, you need to download pytorch_ssim and put it in your directory.
The two main scripts are train and evaluate. To train run
python train.py --FLAGS
To see available flags run python train.py -h
. Similarly, to evaluate our network we run
python evaluate.py --FLAGS
For instance, to train the top performing network, we ran
python train.py --net unet_alt --loss_fn vgg16_l1_alt --layer 9 --lambda_1 10 --lambda_2 1 --skip_connection --batch_sz 2 --init_features 64 --patch_sz 512 --train ./data/train_kits_img --valid ./data/val_kits_img --epochs 100 --n_samples 2 --log_interval 25
This model is then saved as unet_alt_64_vgg16_l1_alt_9_100_2_sc_512_10.0_1.0_2_train_kits_img
in .\results
. To evaluate this network run
python evaluate.py --net unet_alt_64_vgg16_l1_alt_9_100_2_sc_512_10.0_1.0_2_train_kits_img --loss_fn vgg16_alt --data ./data/test_kits_img --idx_print 34 --n_samples 1
Dennis Hein
[email protected]
The following sources were helpful for this project: