==把小林coding的总结摘抄出来,方便之后直接进行回顾==
最后我们再来回答开头的问题。
64 位相比 32 位 CPU 的优势在哪吗?64 位 CPU 的计算性能一定比 32 位 CPU 高很多吗?
64 位相比 32 位 CPU 的优势主要体现在两个方面:
- 64 位 CPU 可以一次计算超过 32 位的数字,而 32 位 CPU 如果要计算超过 32 位的数字,要分多步骤进行计算,效率就没那么高,但是大部分应用程序很少会计算那么大的数字,所以只有运算大数字的时候,64 位 CPU 的优势才能体现出来,否则和 32 位 CPU 的计算性能相差不大。
- 64 位 CPU 可以寻址更大的内存空间,32 位 CPU 最大的寻址地址是 4G,即使你加了 8G 大小的内存,也还是只能寻址到 4G,而 64 位 CPU 最大寻址地址是
2^64
,远超于 32 位 CPU 最大寻址地址的2^32
。
你知道软件的 32 位和 64 位之间的区别吗?再来 32 位的操作系统可以运行在 64 位的电脑上吗?64 位的操作系统可以运行在 32 位的电脑上吗?如果不行,原因是什么?
64 位和 32 位软件,实际上代表指令是 64 位还是 32 位的:
- 如果 32 位指令在 64 位机器上执行,需要一套兼容机制,就可以做到兼容运行了。但是如果 64 位指令在 32 位机器上执行,就比较困难了,因为 32 位的寄存器存不下 64 位的指令;
- 操作系统其实也是一种程序,我们也会看到操作系统会分成 32 位操作系统、64 位操作系统,其代表意义就是操作系统中程序的指令是多少位,比如 64 位操作系统,指令也就是 64 位,因此不能装在 32 位机器上。
总之,硬件的 64 位和 32 位指的是 CPU 的位宽,软件的 64 位和 32 位指的是指令的位宽。
各种存储器之间的关系,可以用我们在图书馆学习这个场景来理解。
CPU 可以比喻成我们的大脑,我们当前正在思考和处理的知识的过程,就好比 CPU 中的寄存器处理数据的过程,速度极快,但是容量很小。而 CPU 中的 L1-L3 Cache 好比我们大脑中的短期记忆和长期记忆,需要小小花费点时间来调取数据并处理。
我们面前的桌子就相当于内存,能放下更多的书(数据),但是找起来和看起来就要花费一些时间,相比 CPU Cache 慢不少。而图书馆的书架相当于硬盘,能放下比内存更多的数据,但找起来就更费时间了,可以说是最慢的存储器设备了。
从 寄存器、CPU Cache,到内存、硬盘,这样一层层下来的存储器,访问速度越来越慢,存储容量越来越大,价格也越来越便宜,而且每个存储器只和相邻的一层存储器设备打交道,于是这样就形成了存储器的层次结构。
再来回答,开头的问题:那机械硬盘、固态硬盘、内存这三个存储器,到底和 CPU L1 Cache
相比速度差多少倍呢?
CPU L1 Cache 随机访问延时是 1 纳秒,内存则是 100 纳秒,所以 CPU L1 Cache 比内存快 100 倍左右。
SSD 随机访问延时是 150 微妙,所以 CPU L1 Cache 比 SSD 快 150000 倍左右。
最慢的机械硬盘随机访问延时已经高达 10 毫秒,我们来看看机械硬盘到底有多「龟速」:
- SSD 比机械硬盘快 70 倍左右;
- 内存比机械硬盘快 100000 倍左右;
- CPU L1 Cache 比机械硬盘快 10000000 倍左右;
我们把上述的时间比例差异放大后,就能非常直观感受到它们的性能差异了。如果 CPU 访问 L1 Cache 的缓存时间是 1 秒,那访问内存则需要大约 2 分钟,随机访问 SSD 里的数据则需要 1.7 天,访问机械硬盘那更久,长达近 4 个月。
可以发现,不同的存储器之间性能差距很大,构造存储器分级很有意义,分级的目的是要构造缓存体系。
由于随着计算机技术的发展,CPU 与 内存的访问速度相差越来越多,如今差距已经高达好几百倍了,所以 CPU 内部嵌入了 CPU Cache 组件,作为内存与 CPU 之间的缓存层,CPU Cache 由于离 CPU 核心很近,所以访问速度也是非常快的,但由于所需材料成本比较高,它不像内存动辄几个 GB 大小,而是仅有几十 KB 到 MB 大小。
当 CPU 访问数据的时候,先是访问 CPU Cache,如果缓存命中的话,则直接返回数据,就不用每次都从内存读取速度了。因此,缓存命中率越高,代码的性能越好。
但需要注意的是,当 CPU 访问数据时,如果 CPU Cache 没有缓存该数据,则会从内存读取数据,但是并不是只读一个数据,而是一次性读取一块一块的数据存放到 CPU Cache 中,之后才会被 CPU 读取。
内存地址映射到 CPU Cache 地址里的策略有很多种,其中比较简单是直接映射 Cache,它巧妙的把内存地址拆分成「索引 + 组标记 + 偏移量」的方式,使得我们可以将很大的内存地址,映射到很小的 CPU Cache 地址里。
要想写出让 CPU 跑得更快的代码,就需要写出缓存命中率高的代码,CPU L1 Cache 分为数据缓存和指令缓存,因而需要分别提高它们的缓存命中率:
- 对于数据缓存,我们在遍历数据的时候,应该按照内存布局的顺序操作,这是因为 CPU Cache 是根据 CPU Cache Line 批量操作数据的,所以顺序地操作连续内存数据时,性能能得到有效的提升;
- 对于指令缓存,有规律的条件分支语句能够让 CPU 的分支预测器发挥作用,进一步提高执行的效率;
另外,对于多核 CPU 系统,线程可能在不同 CPU 核心来回切换,这样各个核心的缓存命中率就会受到影响,于是要想提高线程的缓存命中率,可以考虑把线程绑定 CPU 到某一个 CPU 核心。
CPU 在读写数据的时候,都是在 CPU Cache 读写数据的,原因是 Cache 离 CPU 很近,读写性能相比内存高出很多。对于 Cache 里没有缓存 CPU 所需要读取的数据的这种情况,CPU 则会从内存读取数据,并将数据缓存到 Cache 里面,最后 CPU 再从 Cache 读取数据。
而对于数据的写入,CPU 都会先写入到 Cache 里面,然后再在找个合适的时机写入到内存,那就有「写直达」和「写回」这两种策略来保证 Cache 与内存的数据一致性:
- 写直达,只要有数据写入,都会直接把数据写入到内存里面,这种方式简单直观,但是性能就会受限于内存的访问速度;
- 写回,对于已经缓存在 Cache 的数据的写入,只需要更新其数据就可以,不用写入到内存,只有在需要把缓存里面的脏数据交换出去的时候,才把数据同步到内存里,这种方式在缓存命中率高的情况,性能会更好;
当今 CPU 都是多核的,每个核心都有各自独立的 L1/L2 Cache,只有 L3 Cache 是多个核心之间共享的。所以,我们要确保多核缓存是一致性的,否则会出现错误的结果。
要想实现缓存一致性,关键是要满足 2 点:
- 第一点是写传播,也就是当某个 CPU 核心发生写入操作时,需要把该事件广播通知给其他核心;
- 第二点是事物的串行化,这个很重要,只有保证了这个,才能保障我们的数据是真正一致的,我们的程序在各个不同的核心上运行的结果也是一致的;
基于总线嗅探机制的 MESI 协议,就满足上面了这两点,因此它是保障缓存一致性的协议。
MESI 协议,是已修改、独占、共享、已失效这四个状态的英文缩写的组合。整个 MSI 状态的变更,则是根据来自本地 CPU 核心的请求,或者来自其他 CPU 核心通过总线传输过来的请求,从而构成一个流动的状态机。另外,对于在「已修改」或者「独占」状态的 Cache Line,修改更新其数据不需要发送广播给其他 CPU 核心。
理解 CPU 是如何读写数据的前提,是要理解 CPU 的架构,CPU 内部的多个 Cache + 外部的内存和磁盘都就构成了金字塔的存储器结构,在这个金字塔中,越往下,存储器的容量就越大,但访问速度就会小。
CPU 读写数据的时候,并不是按一个一个字节为单位来进行读写,而是以 CPU Line 大小为单位,CPU Line 大小一般是 64 个字节,也就意味着 CPU 读写数据的时候,每一次都是以 64 字节大小为一块进行操作。
因此,如果我们操作的数据是数组,那么访问数组元素的时候,按内存分布的地址顺序进行访问,这样能充分利用到 Cache,程序的性能得到提升。但如果操作的数据不是数组,而是普通的变量,并在多核 CPU 的情况下,我们还需要避免 Cache Line 伪共享的问题。
所谓的 Cache Line 伪共享问题就是,多个线程同时读写同一个 Cache Line 的不同变量时,而导致 CPU Cache 失效的现象。那么对于多个线程共享的热点数据,即经常会修改的数据,应该避免这些数据刚好在同一个 Cache Line 中,避免的方式一般有 Cache Line 大小字节对齐,以及字节填充等方法。
系统中需要运行的多线程数一般都会大于 CPU 核心,这样就会导致线程排队等待 CPU,这可能会产生一定的延时,如果我们的任务对延时容忍度很低,则可以通过一些人为手段干预 Linux 的默认调度策略和优先级。
为了避免由于中断处理程序执行时间过长,而影响正常进程的调度,Linux 将中断处理程序分为上半部和下半部:
- 上半部,对应硬中断,由硬件触发中断,用来快速处理中断;
- 下半部,对应软中断,由内核触发中断,用来异步处理上半部未完成的工作;
Linux 中的软中断包括网络收发、定时、调度、RCU 锁等各种类型,可以通过查看 /proc/softirqs 来观察软中断的累计中断次数情况,如果要实时查看中断次数的变化率,可以使用 watch -d cat /proc/softirqs 命令。
每一个 CPU 都有各自的软中断内核线程,我们还可以用 ps 命令来查看内核线程,一般名字在中括号里面到,都认为是内核线程。
如果在 top 命令发现,CPU 在软中断上的使用率比较高,而且 CPU 使用率最高的进程也是软中断 ksoftirqd 的时候,这种一般可以认为系统的开销被软中断占据了。
这时我们就可以分析是哪种软中断类型导致的,一般来说都是因为网络接收软中断导致的,如果是的话,可以用 sar 命令查看是哪个网卡的有大量的网络包接收,再用 tcpdump 抓网络包,做进一步分析该网络包的源头是不是非法地址,如果是就需要考虑防火墙增加规则,如果不是,则考虑硬件升级等。
最后,再来回答开头的问题。
为什么负数要用补码表示?
负数之所以用补码的方式来表示,主要是为了统一和正数的加减法操作一样,毕竟数字的加减法是很常用的一个操作,就不要搞特殊化,尽量以统一的方式来运算。
十进制小数怎么转成二进制?
十进制整数转二进制使用的是「除 2 取余法」,十进制小数使用的是「乘 2 取整法」。
计算机是怎么存小数的?
计算机是以浮点数的形式存储小数的,大多数计算机都是 IEEE 754 标准定义的浮点数格式,包含三个部分:
- 符号位:表示数字是正数还是负数,为 0 表示正数,为 1 表示负数;
- 指数位:指定了小数点在数据中的位置,指数可以是负数,也可以是正数,指数位的长度越长则数值的表达范围就越大;
- 尾数位:小数点右侧的数字,也就是小数部分,比如二进制 1.0011 x 2^(-2),尾数部分就是 0011,而且尾数的长度决定了这个数的精度,因此如果要表示精度更高的小数,则就要提高尾数位的长度;
用 32 位来表示的浮点数,则称为单精度浮点数,也就是我们编程语言中的 float 变量,而用 64 位来表示的浮点数,称为双精度浮点数,也就是 double 变量。
0.1 + 0.2 == 0.3 吗?
不是的,0.1 和 0.2 这两个数字用二进制表达会是一个一直循环的二进制数,比如 0.1 的二进制表示为 0.0 0011 0011 0011… (0011 无限循环),对于计算机而言,0.1 无法精确表达,这是浮点数计算造成精度损失的根源。
因此,IEEE 754 标准定义的浮点数只能根据精度舍入,然后用「近似值」来表示该二进制,那么意味着计算机存放的小数可能不是一个真实值。
0.1 + 0.2 并不等于完整的 0.3,这主要是因为这两个小数无法用「完整」的二进制来表示,只能根据精度舍入,所以计算机里只能采用近似数的方式来保存,那两个近似数相加,得到的必然也是一个近似数。
对于内核的架构一般有这三种类型:
- 宏内核,包含多个模块,整个内核像一个完整的程序;
- 微内核,有一个最小版本的内核,一些模块和服务则由用户态管理;
- 混合内核,是宏内核和微内核的结合体,内核中抽象出了微内核的概念,也就是内核中会有一个小型的内核,其他模块就在这个基础上搭建,整个内核是个完整的程序;
Linux 的内核设计是采用了宏内核,Window 的内核设计则是采用了混合内核。
这两个操作系统的可执行文件格式也不一样, Linux 可执行文件格式叫作 ELF,Windows 可执行文件格式叫作 PE。
为了在多进程环境下,使得进程之间的内存地址不受影响,相互隔离,于是操作系统就为每个进程独立分配一套虚拟地址空间,每个程序只关心自己的虚拟地址就可以,实际上大家的虚拟地址都是一样的,但分布到物理地址内存是不一样的。作为程序,也不用关心物理地址的事情。
每个进程都有自己的虚拟空间,而物理内存只有一个,所以当启用了大量的进程,物理内存必然会很紧张,于是操作系统会通过内存交换技术,把不常使用的内存暂时存放到硬盘(换出),在需要的时候再装载回物理内存(换入)。
那既然有了虚拟地址空间,那必然要把虚拟地址「映射」到物理地址,这个事情通常由操作系统来维护。
那么对于虚拟地址与物理地址的映射关系,可以有分段和分页的方式,同时两者结合都是可以的。
内存分段是根据程序的逻辑角度,分成了栈段、堆段、数据段、代码段等,这样可以分离出不同属性的段,同时是一块连续的空间。但是每个段的大小都不是统一的,这就会导致内存碎片和内存交换效率低的问题。
于是,就出现了内存分页,把虚拟空间和物理空间分成大小固定的页,如在 Linux 系统中,每一页的大小为 4KB
。由于分了页后,就不会产生细小的内存碎片。同时在内存交换的时候,写入硬盘也就一个页或几个页,这就大大提高了内存交换的效率。
再来,为了解决简单分页产生的页表过大的问题,就有了多级页表,它解决了空间上的问题,但这就会导致 CPU 在寻址的过程中,需要有很多层表参与,加大了时间上的开销。于是根据程序的局部性原理,在 CPU 芯片中加入了 TLB,负责缓存最近常被访问的页表项,大大提高了地址的转换速度。
Linux 系统主要采用了分页管理,但是由于 Intel 处理器的发展史,Linux 系统无法避免分段管理。于是 Linux 就把所有段的基地址设为 0
,也就意味着所有程序的地址空间都是线性地址空间(虚拟地址),相当于屏蔽了 CPU 逻辑地址的概念,所以段只被用于访问控制和内存保护。
另外,Linux 系统中虚拟空间分布可分为用户态和内核态两部分,其中用户态的分布:代码段、全局变量、BSS、函数栈、堆内存、映射区。
无总结 知道下就行
由于每个进程的用户空间都是独立的,不能相互访问,这时就需要借助内核空间来实现进程间通信,原因很简单,每个进程都是共享一个内核空间。
Linux 内核提供了不少进程间通信的方式,其中最简单的方式就是管道,管道分为「匿名管道」和「命名管道」。
匿名管道顾名思义,它没有名字标识,匿名管道是特殊文件只存在于内存,没有存在于文件系统中,shell 命令中的「|
」竖线就是匿名管道,通信的数据是无格式的流并且大小受限,通信的方式是单向的,数据只能在一个方向上流动,如果要双向通信,需要创建两个管道,再来匿名管道是只能用于存在父子关系的进程间通信,匿名管道的生命周期随着进程创建而建立,随着进程终止而消失。
命名管道突破了匿名管道只能在亲缘关系进程间的通信限制,因为使用命名管道的前提,需要在文件系统创建一个类型为 p 的设备文件,那么毫无关系的进程就可以通过这个设备文件进行通信。另外,不管是匿名管道还是命名管道,进程写入的数据都是缓存在内核中,另一个进程读取数据时候自然也是从内核中获取,同时通信数据都遵循先进先出原则,不支持 lseek 之类的文件定位操作。
消息队列克服了管道通信的数据是无格式的字节流的问题,消息队列实际上是保存在内核的「消息链表」,消息队列的消息体是可以用户自定义的数据类型,发送数据时,会被分成一个一个独立的消息体,当然接收数据时,也要与发送方发送的消息体的数据类型保持一致,这样才能保证读取的数据是正确的。消息队列通信的速度不是最及时的,毕竟每次数据的写入和读取都需要经过用户态与内核态之间的拷贝过程。
共享内存可以解决消息队列通信中用户态与内核态之间数据拷贝过程带来的开销,它直接分配一个共享空间,每个进程都可以直接访问,就像访问进程自己的空间一样快捷方便,不需要陷入内核态或者系统调用,大大提高了通信的速度,享有最快的进程间通信方式之名。但是便捷高效的共享内存通信,带来新的问题,多进程竞争同个共享资源会造成数据的错乱。
那么,就需要信号量来保护共享资源,以确保任何时刻只能有一个进程访问共享资源,这种方式就是互斥访问。信号量不仅可以实现访问的互斥性,还可以实现进程间的同步,信号量其实是一个计数器,表示的是资源个数,其值可以通过两个原子操作来控制,分别是 P 操作和 V 操作。
与信号量名字很相似的叫信号,它俩名字虽然相似,但功能一点儿都不一样。信号是异步通信机制,信号可以在应用进程和内核之间直接交互,内核也可以利用信号来通知用户空间的进程发生了哪些系统事件,信号事件的来源主要有硬件来源(如键盘 Cltr+C )和软件来源(如 kill 命令),一旦有信号发生,进程有三种方式响应信号 1. 执行默认操作、2. 捕捉信号、3. 忽略信号。有两个信号是应用进程无法捕捉和忽略的,即 SIGKILL
和 SIGSTOP
,这是为了方便我们能在任何时候结束或停止某个进程。
前面说到的通信机制,都是工作于同一台主机,如果要与不同主机的进程间通信,那么就需要 Socket 通信了。Socket 实际上不仅用于不同的主机进程间通信,还可以用于本地主机进程间通信,可根据创建 Socket 的类型不同,分为三种常见的通信方式,一个是基于 TCP 协议的通信方式,一个是基于 UDP 协议的通信方式,一个是本地进程间通信方式。
以上,就是进程间通信的主要机制了。你可能会问了,那线程通信间的方式呢?
同个进程下的线程之间都是共享进程的资源,只要是共享变量都可以做到线程间通信,比如全局变量,所以对于线程间关注的不是通信方式,而是关注多线程竞争共享资源的问题,信号量也同样可以在线程间实现互斥与同步:
- 互斥的方式,可保证任意时刻只有一个线程访问共享资源;
- 同步的方式,可保证线程 A 应在线程 B 之前执行;
简单来说,死锁问题的产生是由两个或者以上线程并行执行的时候,争夺资源而互相等待造成的。
死锁只有同时满足互斥、持有并等待、不可剥夺、环路等待这四个条件的时候才会发生。
所以要避免死锁问题,就是要破坏其中一个条件即可,最常用的方法就是使用资源有序分配法来破坏环路等待条件。
开发过程中,最常见的就是互斥锁的了,互斥锁加锁失败时,会用「线程切换」来应对,当加锁失败的线程再次加锁成功后的这一过程,会有两次线程上下文切换的成本,性能损耗比较大。
如果我们明确知道被锁住的代码的执行时间很短,那我们应该选择开销比较小的自旋锁,因为自旋锁加锁失败时,并不会主动产生线程切换,而是一直忙等待,直到获取到锁,那么如果被锁住的代码执行时间很短,那这个忙等待的时间相对应也很短。
如果能区分读操作和写操作的场景,那读写锁就更合适了,它允许多个读线程可以同时持有读锁,提高了读的并发性。根据偏袒读方还是写方,可以分为读优先锁和写优先锁,读优先锁并发性很强,但是写线程会被饿死,而写优先锁会优先服务写线程,读线程也可能会被饿死,那为了避免饥饿的问题,于是就有了公平读写锁,它是用队列把请求锁的线程排队,并保证先入先出的原则来对线程加锁,这样便保证了某种线程不会被饿死,通用性也更好点。
互斥锁和自旋锁都是最基本的锁,读写锁可以根据场景来选择这两种锁其中的一个进行实现。
另外,互斥锁、自旋锁、读写锁都属于悲观锁,悲观锁认为并发访问共享资源时,冲突概率可能非常高,所以在访问共享资源前,都需要先加锁。
相反的,如果并发访问共享资源时,冲突概率非常低的话,就可以使用乐观锁,它的工作方式是,在访问共享资源时,不用先加锁,修改完共享资源后,再验证这段时间内有没有发生冲突,如果没有其他线程在修改资源,那么操作完成,如果发现有其他线程已经修改过这个资源,就放弃本次操作。
但是,一旦冲突概率上升,就不适合使用乐观锁了,因为它解决冲突的重试成本非常高。
不管使用的哪种锁,我们的加锁的代码范围应该尽可能的小,也就是加锁的粒度要小,这样执行速度会比较快。再来,使用上了合适的锁,就会快上加快了。
早期 I/O 操作,内存与磁盘的数据传输的工作都是由 CPU 完成的,而此时 CPU 不能执行其他任务,会特别浪费 CPU 资源。
于是,为了解决这一问题,DMA 技术就出现了,每个 I/O 设备都有自己的 DMA 控制器,通过这个 DMA 控制器,CPU 只需要告诉 DMA 控制器,我们要传输什么数据,从哪里来,到哪里去,就可以放心离开了。后续的实际数据传输工作,都会由 DMA 控制器来完成,CPU 不需要参与数据传输的工作。
传统 IO 的工作方式,从硬盘读取数据,然后再通过网卡向外发送,我们需要进行 4 上下文切换,和 4 次数据拷贝,其中 2 次数据拷贝发生在内存里的缓冲区和对应的硬件设备之间,这个是由 DMA 完成,另外 2 次则发生在内核态和用户态之间,这个数据搬移工作是由 CPU 完成的。
为了提高文件传输的性能,于是就出现了零拷贝技术,它通过一次系统调用(sendfile
方法)合并了磁盘读取与网络发送两个操作,降低了上下文切换次数。另外,拷贝数据都是发生在内核中的,天然就降低了数据拷贝的次数。
Kafka 和 Nginx 都有实现零拷贝技术,这将大大提高文件传输的性能。
零拷贝技术是基于 PageCache 的,PageCache 会缓存最近访问的数据,提升了访问缓存数据的性能,同时,为了解决机械硬盘寻址慢的问题,它还协助 I/O 调度算法实现了 IO 合并与预读,这也是顺序读比随机读性能好的原因。这些优势,进一步提升了零拷贝的性能。
需要注意的是,零拷贝技术是不允许进程对文件内容作进一步的加工的,比如压缩数据再发送。
另外,当传输大文件时,不能使用零拷贝,因为可能由于 PageCache 被大文件占据,而导致「热点」小文件无法利用到 PageCache,并且大文件的缓存命中率不高,这时就需要使用「异步 IO + 直接 IO 」的方式。
在 Nginx 里,可以通过配置,设定一个文件大小阈值,针对大文件使用异步 IO 和直接 IO,而对小文件使用零拷贝。
最基础的 TCP 的 Socket 编程,它是阻塞 I/O 模型,基本上只能一对一通信,那为了服务更多的客户端,我们需要改进网络 I/O 模型。
比较传统的方式是使用多进程/线程模型,每来一个客户端连接,就分配一个进程/线程,然后后续的读写都在对应的进程/线程,这种方式处理 100 个客户端没问题,但是当客户端增大到 10000 个时,10000 个进程/线程的调度、上下文切换以及它们占用的内存,都会成为瓶颈。
为了解决上面这个问题,就出现了 I/O 的多路复用,可以只在一个进程里处理多个文件的 I/O,Linux 下有三种提供 I/O 多路复用的 API,分别是: select、poll、epoll。
select 和 poll 并没有本质区别,它们内部都是使用「线性结构」来存储进程关注的 Socket 集合。
在使用的时候,首先需要把关注的 Socket 集合通过 select/poll 系统调用从用户态拷贝到内核态,然后由内核检测事件,当有网络事件产生时,内核需要遍历进程关注 Socket 集合,找到对应的 Socket,并设置其状态为可读/可写,然后把整个 Socket 集合从内核态拷贝到用户态,用户态还要继续遍历整个 Socket 集合找到可读/可写的 Socket,然后对其处理。
很明显发现,select 和 poll 的缺陷在于,当客户端越多,也就是 Socket 集合越大,Socket 集合的遍历和拷贝会带来很大的开销,因此也很难应对 C10K。
epoll 是解决 C10K 问题的利器,通过两个方面解决了 select/poll 的问题。
- epoll 在内核里使用「红黑树」来关注进程所有待检测的 Socket,红黑树是个高效的数据结构,增删查一般时间复杂度是 O(logn),通过对这棵黑红树的管理,不需要像 select/poll 在每次操作时都传入整个 Socket 集合,减少了内核和用户空间大量的数据拷贝和内存分配。
- epoll 使用事件驱动的机制,内核里维护了一个「链表」来记录就绪事件,只将有事件发生的 Socket 集合传递给应用程序,不需要像 select/poll 那样轮询扫描整个集合(包含有和无事件的 Socket ),大大提高了检测的效率。
而且,epoll 支持边缘触发和水平触发的方式,而 select/poll 只支持水平触发,一般而言,边缘触发的方式会比水平触发的效率高。
常见的 Reactor 实现方案有三种。
第一种方案单 Reactor 单进程 / 线程,不用考虑进程间通信以及数据同步的问题,因此实现起来比较简单,这种方案的缺陷在于无法充分利用多核 CPU,而且处理业务逻辑的时间不能太长,否则会延迟响应,所以不适用于计算机密集型的场景,适用于业务处理快速的场景,比如 Redis 采用的是单 Reactor 单进程的方案。
第二种方案单 Reactor 多线程,通过多线程的方式解决了方案一的缺陷,但它离高并发还差一点距离,差在只有一个 Reactor 对象来承担所有事件的监听和响应,而且只在主线程中运行,在面对瞬间高并发的场景时,容易成为性能的瓶颈的地方。
第三种方案多 Reactor 多进程 / 线程,通过多个 Reactor 来解决了方案二的缺陷,主 Reactor 只负责监听事件,响应事件的工作交给了从 Reactor,Netty 和 Memcache 都采用了「多 Reactor 多线程」的方案,Nginx 则采用了类似于 「多 Reactor 多进程」的方案。
Reactor 可以理解为「来了事件操作系统通知应用进程,让应用进程来处理」,而 Proactor 可以理解为「来了事件操作系统来处理,处理完再通知应用进程」。
因此,真正的大杀器还是 Proactor,它是采用异步 I/O 实现的异步网络模型,感知的是已完成的读写事件,而不需要像 Reactor 感知到事件后,还需要调用 read 来从内核中获取数据。
不过,无论是 Reactor,还是 Proactor,都是一种基于「事件分发」的网络编程模式,区别在于 Reactor 模式是基于「待完成」的 I/O 事件,而 Proactor 模式则是基于「已完成」的 I/O 事件。
不同的负载均衡算法适用的业务场景也不同的。
轮询这类的策略只能适用与每个节点的数据都是相同的场景,访问任意节点都能请求到数据。但是不适用分布式系统,因为分布式系统意味着数据水平切分到了不同的节点上,访问数据的时候,一定要寻址存储该数据的节点。
哈希算法虽然能建立数据和节点的映射关系,但是每次在节点数量发生变化的时候,最坏情况下所有数据都需要迁移,这样太麻烦了,所以不适用节点数量变化的场景。
为了减少迁移的数据量,就出现了一致性哈希算法。
一致性哈希是指将「存储节点」和「数据」都映射到一个首尾相连的哈希环上,如果增加或者移除一个节点,仅影响该节点在哈希环上顺时针相邻的后继节点,其它数据也不会受到影响。
但是一致性哈希算法不能够均匀的分布节点,会出现大量请求都集中在一个节点的情况,在这种情况下进行容灾与扩容时,容易出现雪崩的连锁反应。
为了解决一致性哈希算法不能够均匀的分布节点的问题,就需要引入虚拟节点,对一个真实节点做多个副本。不再将真实节点映射到哈希环上,而是将虚拟节点映射到哈希环上,并将虚拟节点映射到实际节点,所以这里有「两层」映射关系。
引入虚拟节点后,可以会提高节点的均衡度,还会提高系统的稳定性。所以,带虚拟节点的一致性哈希方法不仅适合硬件配置不同的节点的场景,而且适合节点规模会发生变化的场景。
-
L1 Cache 和 L2 Cache 都是每个 CPU 核心独有的,而 L3 Cache 是多个 CPU 核心共享的。这三个属于CPU Cache
-
不连续性的话会导致缓存命中率不高,代码运行性能低,跳跃访问会比顺序访问效率低。
-
缓存一致性。
-
2.5的cpu调度是内核结构 6.1则是操作系统中。
-
负数为什么用补码的方式表示,原因是在做基本加减法运算时,可以减少一步判断正负。
-
二进制表示小数可能会出现精度丢失问题
-
==宏内核==:简单来说,就是把很多东西都集成进内核,例如linux内核,除了最基本的进程、线程管理、内存管理外,文件系统,驱动,网络协议等等都在内核里面。 优点:效率高。 缺点:稳定性差,开发过程中的bug经常会导致整个系统挂掉。 ==微内核==:内核中只有最基本的调度、内存管理。驱动、文件系统等都是用户态的守护进程去实现的。 优点:超级稳定,驱动等的错误只会导致相应进程死掉,不会导致整个系统都崩溃,做驱动开发时,发现错误,只需要kill掉进程,修正后重启进程就行了,比较方便。 缺点:效率低
-
分段的好处就是能产生连续的内存空间,但是会出现内存碎片和内存交换的空间太大的问题。
-
页表一定要覆盖全部虚拟地址空间,不分级的页表就需要有 100 多万个页表项来映射,而二级分页则只需要 1024 个页表项
-
段页式虽然增加了硬件成本和系统开销,但是提高了内存利用率
-
多级页表解决空间问题,TLB解决时间问题
-
运行一个程序就叫一个进程
-
进程实际上还有种挂起状态,就是不用了,将该进程的物理内存空间换出到硬盘,等需要再次运行的时候,再换回来,除了减少空间的占用,用sleep也可以使得进程挂起
-
进程控制块(process control block,PCB)是进程存在的唯一标识
-
进程的状态什么的改变其实都是跟PCB有关的,修改对应的标识号,加入对应的队列或者移除出队列
-
CPU的上下文切换包括进程 线程 还有 中断上下文切换,把前一个任务的 CPU 上下文(CPU 寄存器和程序计数器)保存起来
-
进程是由内核管理调度的,进程上下文切换的数据都是保存在PCB中的
-
同一个进程内多个线程之间可以共享代码段、数据段、打开的文件等资源,但每个线程各自都有一套独立的寄存器和栈,这样可以确保线程的控制流是相对独立的。
-
IO所需CPU资源很少大部分都是给DMA的
-
进程间通信
- 匿名管道的创建通过fork父进程的fd文件描述符,所以只能适用于父子进程,而命名管道有对应的管道文件,则可以适用于任意进程间,不相关也可,但都是遵循先进先出的原则
- 消息队列比管道好的原因是,管道会一直等待被读,才释放,而消息队列放进去以后就可以正常返回了
-
共享内存其实就是拿出一块虚拟地址空间,映射到相同的物理内存
- 信号事件的来源主要有硬件来源(如键盘 Cltr+C )和软件来源(如 kill 命令)。 信号和信号量区分开来
- 针对TCP协议的通信模型 connect要经历三次握手
-
不同锁的成本,如果你能确定你被锁住的代码执行时间很短那就用自旋锁,不然上下文切换可能用的时间都比锁住的时间长,互斥锁会有两次上下文切换的消耗
-
公平读写锁比较简单的一种方式是:用队列把获取锁的线程排队,不管是写线程还是读线程都按照先进先出的原则加锁即可,这样读线程仍然可以并发,也不会出现「饥饿」的现象
-
在冲突概率小低、加锁成本高的场景下,才考虑使用乐观锁
-
调度算法主要影响的是等待时间
-
什么叫io繁忙型作业,就用一点cpu转而用io设备,这种就是短作业
-
时间片轮转算法 缺点就是时间片太短会导致过多的上下文切换,如果时间片太长又可能会引起短作业响应时间过长
-
磁盘到内存 算磁盘io
-
页面置换的功能:当出现缺页异常,需调入新页面而内存已满时,选择被置换的物理页面,同时被置换出去的页面也得看下是否被修改过,倘若被修改过,还得将其写回磁盘
-
磁盘调度算法的目的很简单,就是为了提高磁盘的访问性能,一般是通过优化磁盘的访问请求顺序来做到的。就是最后性能好坏的评判,根据你访问距离来判断 各个寻道算法都有相应的优缺点吧
-
文件系统的基本操作单元是数据块,用户读取的是字节
-
IO分为两个过程 1、数据准备的过程 2、数据从内核空间拷贝到用户进程缓冲区的过程 阻塞 I/O 会阻塞在「过程 1 」和「过程 2」,而非阻塞 I/O 和基于非阻塞 I/O 的多路复用只会阻塞在「过程 2」,所以这三个都可以认为是同步 I/O。 异步 I/O 则不同,「过程 1 」和「过程 2 」都不会阻塞。
-
IO 在频繁读写的状况下常用DMA
-
针对磁盘的优化特别多比如零拷贝、直接I/O、异步I/O
-
网络系统这章可以看出,为什么现在I/O只占用一点点CPU 通过DMA来
-
要想提高文件传输的性能,就需要减少用户态和内核态的上下文切换和内核拷贝次数
-
零拷贝就是提高文件传输性能 零拷贝技术实现的方式通常有2种
-
零拷贝技术的文件传输方式相比传统文件传输的方式,减少了 2 次上下文切换和数据拷贝次数,只需要 2 次上下文切换和数据拷贝次数,就可以完成文件的传输,而且 2 次的数据拷贝过程,都不需要通过 CPU,2 次都是由 DMA 来搬运。
-
Kafka使用到了零拷贝技术,它文件传输的代码最终调用了NIO库里的transferTo方法
-
在拷贝的时候,用到了磁盘高速缓存(PageCache),优点:1、缓存最近被访问的数据2、预读功能。传大文件的时候就没什么用了
-
大文件一般就是使用异步I/O+直接I/O,来替代零拷贝技术,直接IO绕过了pageCache
-
关注关注socket模型(多进程、多线程、I/O多路复用)
-
好好学Reactor这是Redis、Nginx、Netty等采用的方案
-
netty采用的就是多Reactor多线程的方案 nginx采用的是多Reactor多进程的方案
-
Reactor 是非阻塞同步网络模式,感知的是就绪可读写事件。 Proactor 是异步网络模式, 感知的是已完成的读写事件。 目前来说linux中的还不完善,同时socket也不支持
-
应对分布式系统的算法一般采用一些一致性哈希算法等 这就是为了避免分布式系统在扩容 ,引入虚拟节点后,会提高节点的均衡度,还会提高系统的稳定性。
-
应用程序要发送数据包时,通常是通过 socket 接口,于是就会发生系统调用,把应用层的数据拷贝到内核里的 socket 层,接着由网络协议栈从上到下逐层处理后,最后才会送到网卡发送出去。接收则相反。
-
PV Page Visitor UV Uniq Visitor