forked from longcw/yolo2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
136 lines (119 loc) · 4.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import torch
import datetime
from darknet import Darknet19
from datasets.pascal_voc import VOCDataset
import utils.yolo as yolo_utils
import utils.network as net_utils
from utils.timer import Timer
import cfgs.config as cfg
from random import randint
try:
from tensorboardX import SummaryWriter
except ImportError:
SummaryWriter = None
# data loader
imdb = VOCDataset(cfg.imdb_train, cfg.DATA_DIR, cfg.train_batch_size,
yolo_utils.preprocess_train, processes=2, shuffle=True,
dst_size=cfg.multi_scale_inp_size)
# dst_size=cfg.inp_size)
print('load data succ...')
net = Darknet19()
# net_utils.load_net(cfg.trained_model, net)
# pretrained_model = os.path.join(cfg.train_output_dir,
# 'darknet19_voc07trainval_exp1_63.h5')
# pretrained_model = cfg.trained_model
# net_utils.load_net(pretrained_model, net)
net.load_from_npz(cfg.pretrained_model, num_conv=18)
net.cuda()
net.train()
print('load net succ...')
# optimizer
start_epoch = 0
lr = cfg.init_learning_rate
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=cfg.momentum,
weight_decay=cfg.weight_decay)
# tensorboad
use_tensorboard = cfg.use_tensorboard and SummaryWriter is not None
# use_tensorboard = False
if use_tensorboard:
summary_writer = SummaryWriter(os.path.join(cfg.TRAIN_DIR, 'runs', cfg.exp_name))
else:
summary_writer = None
batch_per_epoch = imdb.batch_per_epoch
train_loss = 0
bbox_loss, iou_loss, cls_loss = 0., 0., 0.
cnt = 0
t = Timer()
step_cnt = 0
size_index = 0
for step in range(start_epoch * imdb.batch_per_epoch,
cfg.max_epoch * imdb.batch_per_epoch):
t.tic()
# batch
batch = imdb.next_batch(size_index)
im = batch['images']
gt_boxes = batch['gt_boxes']
gt_classes = batch['gt_classes']
dontcare = batch['dontcare']
orgin_im = batch['origin_im']
# forward
im_data = net_utils.np_to_variable(im,
is_cuda=True,
volatile=False).permute(0, 3, 1, 2)
bbox_pred, iou_pred, prob_pred = net(im_data, gt_boxes, gt_classes, dontcare, size_index)
# backward
loss = net.loss
bbox_loss += net.bbox_loss.data.cpu().numpy()[0]
iou_loss += net.iou_loss.data.cpu().numpy()[0]
cls_loss += net.cls_loss.data.cpu().numpy()[0]
train_loss += loss.data.cpu().numpy()[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
cnt += 1
step_cnt += 1
duration = t.toc()
if step % cfg.disp_interval == 0:
train_loss /= cnt
bbox_loss /= cnt
iou_loss /= cnt
cls_loss /= cnt
print(('epoch %d[%d/%d], loss: %.3f, bbox_loss: %.3f, iou_loss: %.3f, '
'cls_loss: %.3f (%.2f s/batch, rest:%s)' %
(imdb.epoch, step_cnt, batch_per_epoch, train_loss, bbox_loss,
iou_loss, cls_loss, duration,
str(datetime.timedelta(seconds=int((batch_per_epoch - step_cnt) * duration)))))) # noqa
if summary_writer and step % cfg.log_interval == 0:
summary_writer.add_scalar('loss_train', train_loss, step)
summary_writer.add_scalar('loss_bbox', bbox_loss, step)
summary_writer.add_scalar('loss_iou', iou_loss, step)
summary_writer.add_scalar('loss_cls', cls_loss, step)
summary_writer.add_scalar('learning_rate', lr, step)
# plot results
bbox_pred = bbox_pred.data[0:1].cpu().numpy()
iou_pred = iou_pred.data[0:1].cpu().numpy()
prob_pred = prob_pred.data[0:1].cpu().numpy()
image = im[0]
bboxes, scores, cls_inds = yolo_utils.postprocess(
bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh=0.3, size_index=size_index)
im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)
summary_writer.add_image('predict', im2show, step)
train_loss = 0
bbox_loss, iou_loss, cls_loss = 0., 0., 0.
cnt = 0
t.clear()
size_index = randint(0, len(cfg.multi_scale_inp_size) - 1)
print("image_size {}".format(cfg.multi_scale_inp_size[size_index]))
if step > 0 and (step % imdb.batch_per_epoch == 0):
if imdb.epoch in cfg.lr_decay_epochs:
lr *= cfg.lr_decay
optimizer = torch.optim.SGD(net.parameters(), lr=lr,
momentum=cfg.momentum,
weight_decay=cfg.weight_decay)
save_name = os.path.join(cfg.train_output_dir,
'{}_{}.h5'.format(cfg.exp_name, imdb.epoch))
net_utils.save_net(save_name, net)
print(('save model: {}'.format(save_name)))
step_cnt = 0
imdb.close()