-
Notifications
You must be signed in to change notification settings - Fork 5
/
boston_housing.py
104 lines (87 loc) · 3.55 KB
/
boston_housing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 6 10:35:53 2018
@author: yuxi
"""
#加载波士顿房价数据集
from keras.datasets import boston_housing
(train_data,train_targets),(test_data,test_targets)=boston_housing.load_data()
#准备数据,标准化
mean=train_data.mean(axis=0)
train_data-=mean
std=train_data.std(axis=0)
train_data/=std
test_data-=mean
test_data/=std
#模型定义
from keras import models
from keras import layers
def build_model():#下面需要将同一个模型多次实例化,所以用一个函数来构建模型
model=models.Sequential()
model.add(layers.Dense(64,activation='relu',input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop',loss='mse',metrics=['mae'])
return model
#K折验证
import numpy as np
k=4
num_val_samples=len(train_data)//k
# =============================================================================
# #设置100轮次
# num_epochs=100
# all_scores=[]
#
# for i in range(k):
# print('processing fold #',i)
# val_data=train_data[i*num_val_samples:(i+1)*num_val_samples]
# val_targets=train_targets[i*num_val_samples:(i+1)*num_val_samples]
#
# partial_train_data=np.concatenate([train_data[:i*num_val_samples],train_data[(i+1)*num_val_samples:]],axis=0)
# partial_train_targets=np.concatenate([train_targets[:i*num_val_samples],train_targets[(i+1)*num_val_samples:]],axis=0)
# model =build_model()
# model.fit(partial_train_data,partial_train_targets,epochs=num_epochs,batch_size=1,verbose=0)
# val_mse,val_mae=model.evaluate(val_data,val_targets,verbose=0)
# all_scores.append(val_mae)
# =============================================================================
#设置500轮次
num_epochs=500
all_mae_histories=[]
for i in range(k):
print('processing fold #',i)
val_data=train_data[i*num_val_samples:(i+1)*num_val_samples]
val_targets=train_targets[i*num_val_samples:(i+1)*num_val_samples]
partial_train_data=np.concatenate([train_data[:i*num_val_samples],train_data[(i+1)*num_val_samples:]],axis=0)
partial_train_targets=np.concatenate([train_targets[:i*num_val_samples],train_targets[(i+1)*num_val_samples:]],axis=0)
model =build_model()
history=model.fit(partial_train_data,partial_train_targets,validation_data=(val_data,val_targets),epochs=num_epochs,batch_size=1,verbose=0)
mae_history=history.history['val_mean_absolute_error']
all_mae_histories.append(mae_history)
#计算所有轮次中的K折验证分数平均值
average_mae_history=[np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
#绘制验证分数
import matplotlib.pyplot as plt
plt.plot(range(1,len(average_mae_history)+1),average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
#绘制验证分数(删除前10个点,并做光滑处理)
def smooth_curve(points,factor=0.9):
smoothed_points=[]
for point in points:
if smoothed_points:
previous =smoothed_points[-1]
smoothed_points.append(previous*factor+point*(1-factor))
else:
smoothed_points.append(point)
return smoothed_points
smooth_mae_history =smooth_curve(average_mae_history[10:])
plt.plot(range(1,len(smooth_mae_history)+1),smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
#训练最终模型
model=build_model()
model.fit(train_data,train_targets,epochs=80,batch_size=16,verbose=0)
test_mse_score,test_mae_score=model.evaluate(test_data,test_targets)
print(test_mae_score)