forked from skwee/grbl-xyuv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
limits.c
294 lines (262 loc) · 13.2 KB
/
limits.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
The MIT License (MIT)
GRBL(tm) - Embedded CNC g-code interpreter and motion-controller
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2013 Sungeun K. Jeon
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <util/delay.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "stepper.h"
#include "settings.h"
#include "nuts_bolts.h"
#include "config.h"
#include "spindle_control.h"
#include "motion_control.h"
#include "planner.h"
#include "protocol.h"
#include "limits.h"
#include "report.h"
/// 8c1
#include "gcode.h" /// to_degrees()
#include "defaults.h" /// AXIS_T_TYPE
#define MICROSECONDS_PER_ACCELERATION_TICK (1000000/ACCELERATION_TICKS_PER_SECOND)
void limits_init()
{
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
#ifndef LIMIT_SWITCHES_ACTIVE_HIGH
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
#else // LIMIT_SWITCHES_ACTIVE_HIGH
LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down.
#endif // !LIMIT_SWITCHES_ACTIVE_HIGH
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
} else {
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable
PCICR &= ~(1 << LIMIT_INT);
}
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
// bouncing pin without a debouncing method.
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
// homing cycles and will not respond correctly. Upon user request or need, there may be a
// special pinout for an e-stop, but it is generally recommended to just directly connect
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
ISR(LIMIT_INT_vect)
{
// TODO: This interrupt may be used to manage the homing cycle directly with the main stepper
// interrupt without adding too much to it. All it would need is some way to stop one axis
// when its limit is triggered and continue the others. This may reduce some of the code, but
// would make Grbl a little harder to read and understand down road. Holding off on this until
// we move on to new hardware or flash space becomes an issue. If it ain't broke, don't fix it.
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
// Moves all specified axes in same specified direction (positive=true, negative=false)
// and at the homing rate. Homing is a special motion case, where there is only an
// acceleration followed by abrupt asynchronous stops by each axes reaching their limit
// switch independently. Instead of shoehorning homing cycles into the main stepper
// algorithm and overcomplicate things, a stripped-down, lite version of the stepper
// algorithm is written here. This also lets users hack and tune this code freely for
// their own particular needs without affecting the rest of Grbl.
// NOTE: Only the abort runtime command can interrupt this process.
static void homing_cycle(uint8_t cycle_mask, int8_t pos_dir, bool invert_pin, float homing_rate)
{
#ifdef LIMIT_SWITCHES_ACTIVE_HIGH
// When in an active-high switch configuration, invert_pin needs to be adjusted.
invert_pin = !invert_pin;
#endif
// Determine governing axes with finest step resolution per distance for the Bresenham
// algorithm. This solves the issue when homing multiple axes that have different
// resolutions without exceeding system acceleration setting. It doesn't have to be
// perfect since homing locates machine zero, but should create for a more consistent
// and speedy homing routine.
// NOTE: For each axes enabled, the following calculations assume they physically move
// an equal distance over each time step until they hit a limit switch, aka dogleg.
/// 8c0
uint32_t steps[N_AXIS];
uint8_t dist = 0;
clear_vector(steps);
if (cycle_mask & (1<<X_AXIS)) {
dist++;
steps[X_AXIS] = lround(settings.steps_per_mm[X_AXIS]);
}
if (cycle_mask & (1<<Y_AXIS)) {
dist++;
steps[Y_AXIS] = lround(settings.steps_per_mm[Y_AXIS]);
}
if (cycle_mask & (1<<Z_AXIS)) {
dist++;
steps[Z_AXIS] = lround(settings.steps_per_mm[Z_AXIS]);
}
/// 8c1
if (cycle_mask & (1<<T_AXIS)) {
dist++;
#if (AXIS_T_TYPE == ROTARY )
steps[T_AXIS] = lround(to_degrees(settings.steps_per_mm[T_AXIS])); // steps_per_degree
#else
steps[T_AXIS] = lround(settings.steps_per_mm[T_AXIS]);
#endif
}
uint32_t step_event_count = max(steps[X_AXIS], max(steps[Y_AXIS], max (steps[Z_AXIS], steps[T_AXIS])));
// To ensure global acceleration is not exceeded, reduce the governing axes nominal rate
// by adjusting the actual axes distance traveled per step. This is the same procedure
// used in the main planner to account for distance traveled when moving multiple axes.
// NOTE: When axis acceleration independence is installed, this will be updated to move
// all axes at their maximum acceleration and rate.
float ds = step_event_count/sqrt(dist);
// Compute the adjusted step rate change with each acceleration tick. (in step/min/acceleration_tick)
uint32_t delta_rate = ceil( ds*settings.acceleration/(60*ACCELERATION_TICKS_PER_SECOND));
#ifdef HOMING_RATE_ADJUST
// Adjust homing rate so a multiple axes moves all at the homing rate independently.
homing_rate *= sqrt(dist); // Eq. only works if axes values are 1 or 0.
#endif
// Nominal and initial time increment per step. Nominal should always be greater then 3
// usec, since they are based on the same parameters as the main stepper routine. Initial
// is based on the MINIMUM_STEPS_PER_MINUTE config. Since homing feed can be very slow,
// disable acceleration when rates are below MINIMUM_STEPS_PER_MINUTE.
uint32_t dt_min = lround(1000000*60/(ds*homing_rate)); // Cruising (usec/step)
uint32_t dt = 1000000*60/MINIMUM_STEPS_PER_MINUTE; // Initial (usec/step)
if (dt > dt_min) { dt = dt_min; } // Disable acceleration for very slow rates.
// Set default out_bits.
uint8_t out_bits0 = settings.invert_mask;
out_bits0 ^= (settings.homing_dir_mask & DIRECTION_MASK); // Apply homing direction settings
if (!pos_dir) { out_bits0 ^= DIRECTION_MASK; } // Invert bits, if negative dir.
// Initialize stepping variables
int32_t counter_x = -(step_event_count >> 1); // Bresenham counters
int32_t counter_y = counter_x;
int32_t counter_z = counter_x;
/// 8c1
int32_t counter_t = counter_x;
uint32_t step_delay = dt-settings.pulse_microseconds; // Step delay after pulse
uint32_t step_rate = 0; // Tracks step rate. Initialized from 0 rate. (in step/min)
uint32_t trap_counter = MICROSECONDS_PER_ACCELERATION_TICK/2; // Acceleration trapezoid counter
uint8_t out_bits;
uint8_t limit_state;
for(;;) {
// Reset out bits. Both direction and step pins appropriately inverted and set.
out_bits = out_bits0;
// Get limit pin state.
limit_state = LIMIT_PIN;
if (invert_pin) { limit_state ^= LIMIT_MASK; } // If leaving switch, invert to move.
// Set step pins by Bresenham line algorithm. If limit switch reached, disable and
// flag for completion.
if (cycle_mask & (1<<X_AXIS)) {
counter_x += steps[X_AXIS];
if (counter_x > 0) {
if (limit_state & (1<<X_LIMIT_BIT)) { out_bits ^= (1<<X_STEP_BIT); }
else { cycle_mask &= ~(1<<X_AXIS); }
counter_x -= step_event_count;
}
}
if (cycle_mask & (1<<Y_AXIS)) {
counter_y += steps[Y_AXIS];
if (counter_y > 0) {
if (limit_state & (1<<Y_LIMIT_BIT)) { out_bits ^= (1<<Y_STEP_BIT); }
else { cycle_mask &= ~(1<<Y_AXIS); }
counter_y -= step_event_count;
}
}
if (cycle_mask & (1<<Z_AXIS)) {
counter_z += steps[Z_AXIS];
if (counter_z > 0) {
if (limit_state & (1<<Z_LIMIT_BIT)) { out_bits ^= (1<<Z_STEP_BIT); }
else { cycle_mask &= ~(1<<Z_AXIS); }
counter_z -= step_event_count;
}
}
/// 8c1 : axis T
if (cycle_mask & (1<<T_AXIS)) {
counter_t += steps[T_AXIS] ;
if (counter_t > 0) {
if (limit_state & (1<<T_LIMIT_BIT)) { out_bits ^= (1<<T_STEP_BIT); }
else { cycle_mask &= ~(1<<T_AXIS); }
counter_t -= step_event_count;
}
}
// Check if we are done or for system abort
if (!(cycle_mask) || (sys.execute & EXEC_RESET)) { return; }
// Perform step.
// SKW 1
// STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (out_bits & STEP_MASK);
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK1) | (out_bits & STEP_MASK1);
STEPPING_PORT2 = (STEPPING_PORT2 & ~STEP_MASK2) | ((out_bits << 4) & STEP_MASK2);
delay_us(settings.pulse_microseconds);
// SKW 2 ?? TODO
// STEPPING_PORT = out_bits0;
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK1) | (out_bits0 & STEP_MASK1);
STEPPING_PORT2 = (STEPPING_PORT2 & ~STEP_MASK2) | ((out_bits0 << 4) & STEP_MASK2);
delay_us(step_delay);
// Track and set the next step delay, if required. This routine uses another Bresenham
// line algorithm to follow the constant acceleration line in the velocity and time
// domain. This is a lite version of the same routine used in the main stepper program.
if (dt > dt_min) { // Unless cruising, check for time update.
trap_counter += dt; // Track time passed since last update.
if (trap_counter > MICROSECONDS_PER_ACCELERATION_TICK) {
trap_counter -= MICROSECONDS_PER_ACCELERATION_TICK;
step_rate += delta_rate; // Increment velocity
dt = (1000000*60)/step_rate; // Compute new time increment
if (dt < dt_min) {dt = dt_min;} // If target rate reached, cruise.
step_delay = dt-settings.pulse_microseconds;
}
}
}
}
void limits_go_home()
{
// Enable only the steppers, not the cycle. Cycle should be inactive/complete.
st_wake_up();
// Search to engage all axes limit switches at faster homing seek rate.
homing_cycle(HOMING_SEARCH_CYCLE_0, true, false, settings.homing_seek_rate); // Search cycle 0
#ifdef HOMING_SEARCH_CYCLE_1
homing_cycle(HOMING_SEARCH_CYCLE_1, true, false, settings.homing_seek_rate); // Search cycle 1
#endif
#ifdef HOMING_SEARCH_CYCLE_2
homing_cycle(HOMING_SEARCH_CYCLE_2, true, false, settings.homing_seek_rate); // Search cycle 2
#endif
delay_ms(settings.homing_debounce_delay); // Delay to debounce signal
// Now in proximity of all limits. Carefully leave and approach switches in multiple cycles
// to precisely hone in on the machine zero location. Moves at slower homing feed rate.
int8_t n_cycle = N_HOMING_LOCATE_CYCLE;
while (n_cycle--) {
// Leave all switches to release them. After cycles complete, this is machine zero.
homing_cycle(HOMING_LOCATE_CYCLE, false, true, settings.homing_feed_rate);
delay_ms(settings.homing_debounce_delay);
if (n_cycle > 0) {
// Re-approach all switches to re-engage them.
homing_cycle(HOMING_LOCATE_CYCLE, true, false, settings.homing_feed_rate);
delay_ms(settings.homing_debounce_delay);
}
}
st_go_idle(); // Call main stepper shutdown routine.
}