-
Notifications
You must be signed in to change notification settings - Fork 9
/
debertabilstm_trainer.py
429 lines (358 loc) · 18 KB
/
debertabilstm_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import os
import json
import pickle
import argparse
import numpy as np
import pandas as pd
import transformers
from torch import nn
from functools import partial
import multiprocessing as mp
from losses.jaccard import JaccardLoss
from scipy.special import softmax
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset
from transformers import (AutoTokenizer,
DataCollatorForTokenClassification,
TrainingArguments,
Trainer,
TrainerCallback)
from torch.utils import checkpoint
from models.debertabilstm import DebertaForTokenClassificationwithbiLSTM
ap = argparse.ArgumentParser()
ap.add_argument("--fold", type=int)
cargs = ap.parse_args()
cfg = json.load(open('SETTINGS.json', 'r'))
DATA_BASE_DIR = cfg["DATA_BASE_DIR"]
LR = cfg["LR"]
NUM_EPOCHS = cfg["NUM_EPOCHS"]
NUM_CORES = cfg["NUM_CORES"]
BATCH_SIZE = cfg["BATCH_SIZE"]
USE_FP16 = cfg["USE_FP16"]
GRAD_ACCUM_STEPS = cfg["GRAD_ACCUM_STEPS"]
MAX_SEQ_LENGTH = cfg["MAX_SEQ_LENGTH"]
SPLIT_NUM = cargs.fold
PRETRAINED_MODEL = 'microsoft/deberta-large'
TRAIN_CSV = os.path.join(DATA_BASE_DIR, 'feedback-prize-2021/train.csv')
TRAIN_DIR = os.path.join(DATA_BASE_DIR, 'feedback-prize-2021/train/')
MIN_TOKENS = {
"Lead": 6,
"Position": 3,
"Evidence": 20,
"Claim": 1,
"Concluding Statement": 3,
"Counterclaim": 7,
"Rebuttal": 6
}
train_df = pd.read_csv(TRAIN_CSV)
train_df['discourse_id'] = train_df['discourse_id'].astype('long').astype('str')
train_df['discourse_start'] = train_df['discourse_start'].astype('int')
train_df['discourse_end'] = train_df['discourse_end'].astype('int')
train_df['group'] = LabelEncoder().fit_transform(train_df['id'])
folds = pickle.load(open(os.path.join(DATA_BASE_DIR, 'feedbackgroupshufflesplit1337/groupshufflesplit_1337.p'), 'rb'))
ner_labels = ['O']
for curr_label in train_df['discourse_type'].unique():
ner_labels.append('B-' + curr_label)
ner_labels.append('I-' + curr_label)
ner_labels = dict((x,i) for i,x in enumerate(ner_labels))
inverted_ner_labels = dict((v,k) for k,v in ner_labels.items())
inverted_ner_labels[-100] = 'Special Token'
# CODE FROM : Rob Mulla @robikscube
# https://www.kaggle.com/robikscube/student-writing-competition-twitch
def calc_overlap(row):
"""
Calculates the overlap between prediction and
ground truth and overlap percentages used for determining
true positives.
"""
set_pred = set(row.predictionstring_pred.split(' '))
set_gt = set(row.predictionstring_gt.split(' '))
# Length of each and intersection
len_gt = len(set_gt)
len_pred = len(set_pred)
inter = len(set_gt.intersection(set_pred))
overlap_1 = inter / len_gt
overlap_2 = inter/ len_pred
return [overlap_1, overlap_2]
def score_feedback_comp(pred_df, gt_df):
"""
A function that scores for the kaggle
Student Writing Competition
Uses the steps in the evaluation page here:
https://www.kaggle.com/c/feedback-prize-2021/overview/evaluation
"""
gt_df = gt_df[['id','discourse_type','predictionstring']] \
.reset_index(drop=True).copy()
pred_df = pred_df[['id','class','predictionstring']] \
.reset_index(drop=True).copy()
pred_df['pred_id'] = pred_df.index
gt_df['gt_id'] = gt_df.index
# Step 1. all ground truths and predictions for a given class are compared.
joined = pred_df.merge(gt_df,
left_on=['id','class'],
right_on=['id','discourse_type'],
how='outer',
suffixes=('_pred','_gt')
)
joined['predictionstring_gt'] = joined['predictionstring_gt'].fillna(' ')
joined['predictionstring_pred'] = joined['predictionstring_pred'].fillna(' ')
joined['overlaps'] = joined.apply(calc_overlap, axis=1)
# 2. If the overlap between the ground truth and prediction is >= 0.5,
# and the overlap between the prediction and the ground truth >= 0.5,
# the prediction is a match and considered a true positive.
# If multiple matches exist, the match with the highest pair of overlaps is taken.
joined['overlap1'] = joined['overlaps'].apply(lambda x: eval(str(x))[0])
joined['overlap2'] = joined['overlaps'].apply(lambda x: eval(str(x))[1])
joined['potential_TP'] = (joined['overlap1'] >= 0.5) & (joined['overlap2'] >= 0.5)
joined['max_overlap'] = joined[['overlap1','overlap2']].max(axis=1)
tp_pred_ids = joined.query('potential_TP') \
.sort_values('max_overlap', ascending=False) \
.groupby(['id','predictionstring_gt']).first()['pred_id'].values
# 3. Any unmatched ground truths are false negatives
# and any unmatched predictions are false positives.
fp_pred_ids = [p for p in joined['pred_id'].unique() if p not in tp_pred_ids]
matched_gt_ids = joined.query('potential_TP')['gt_id'].unique()
unmatched_gt_ids = [c for c in joined['gt_id'].unique() if c not in matched_gt_ids]
# Get numbers of each type
TP = len(tp_pred_ids)
FP = len(fp_pred_ids)
FN = len(unmatched_gt_ids)
#calc microf1
my_f1_score = TP / (TP + 0.5*(FP+FN))
return my_f1_score
def generate_token_to_word_mapping(txt, offset):
# GET WORD POSITIONS IN CHARS
w = []
blank = True
for i in range(len(txt)):
if not txt[i].isspace() and blank==True:
w.append(i)
blank=False
elif txt[i].isspace():
blank=True
w.append(1e6)
# MAPPING FROM TOKENS TO WORDS
word_map = -1 * np.ones(len(offset),dtype='int32')
w_i = 0
for i in range(len(offset)):
if offset[i][1]==0: continue
while offset[i][0]>=w[w_i+1]-1: w_i += 1
word_map[i] = int(w_i)
return word_map
class TextOverlapFBetaScore:
def __init__(self, test_df, test_dataset):
self.test_df = test_df
self.test_dataset = test_dataset
def __call__(self, raw_predictions):
predictions, _ = raw_predictions
soft_predictions = softmax(predictions, -1)
soft_predictions = np.max(soft_predictions, axis=-1)
predictions = np.argmax(predictions, axis=-1)
all_preds = []
# Clumsy gathering of predictions at word lvl - only populate with 1st subword pred
for curr_sample_id in range(len(self.test_dataset)):
sample_preds = predictions[curr_sample_id]
sample_offset = self.test_dataset.get_offset(curr_sample_id)
sample_txt = ner_valid_rows[curr_sample_id][1]
sample_word_map = generate_token_to_word_mapping(sample_txt, sample_offset)
word_preds = [''] * (max(sample_word_map) + 1)
word_probs = dict()
for i, curr_word_id in enumerate(sample_word_map):
if curr_word_id != -1 and word_preds[curr_word_id] == '': # only use 1st subword
word_preds[curr_word_id] = inverted_ner_labels[sample_preds[i]]
word_probs[curr_word_id] = soft_predictions[curr_sample_id, i]
# Dict to hold Lead, Position, Concluding Statement
let_one_dict = dict() # K = Type, V = (Prob of start token, start, end)
# If we see tokens I-X, I-Y, I-X in a sequence -> change I-Y to I-X
for j in range(1, len(word_preds) - 1):
pred_trio = [word_preds[k] for k in [j - 1, j, j + 1]]
splitted_trio = [x.split('-')[0] for x in pred_trio]
if all([x == 'I' for x in splitted_trio]) and pred_trio[0] == pred_trio[2] and pred_trio[0] != pred_trio[1]:
word_preds[j] = word_preds[j-1]
j = 0 # start of candidate discourse
while j < len(word_preds):
cls = word_preds[j]
cls_splitted = cls.split('-')[-1]
end = j + 1 # try to extend discourse as far as possible
if j not in word_probs:
word_probs[j]=0
if word_probs[j] > 0.63:
# Must match suffix i.e., I- to I- only; no B- to I-
while end < len(word_preds) and (word_preds[end].split('-')[-1] == cls_splitted if cls_splitted in ['Lead', 'Position', 'Concluding Statement'] else word_preds[end] == f'I-{cls_splitted}'):
end += 1
# if we're here, end is not the same pred as start
if cls != 'O' and end - j > MIN_TOKENS[cls_splitted]: # needs to be longer than class-specified min
if cls_splitted in ['Lead', 'Position', 'Concluding Statement']:
lpc_max_prob = max(word_probs[c] for c in range(j, end))
if cls_splitted in let_one_dict: # Already existing, check contiguous or higher prob
prev_prob, prev_start, prev_end = let_one_dict[cls_splitted]
if j - prev_end < 3: # If close enough, combine
let_one_dict[cls_splitted] = (max(prev_prob, lpc_max_prob), prev_start, end)
elif lpc_max_prob > prev_prob: # Overwrite if current candidate is more likely
let_one_dict[cls_splitted] = (lpc_max_prob, j, end)
else: # Add to it
let_one_dict[cls_splitted] = (lpc_max_prob, j, end)
else:
# Lookback and add preceding I- tokens
while j - 1 > 0 and word_preds[j-1] == cls:
j = j - 1
# Try to add the matching B- tag if immediately precedes the current I- sequence
if j - 1 > 0 and word_preds[j-1] == f'B-{cls_splitted}':
j = j - 1
all_preds.append((self.test_dataset.get_filename(curr_sample_id),
cls_splitted,
' '.join(map(str, list(range(j, end+1))))))
j = end
# Add the Lead, Position, Concluding Statement
for k, v in let_one_dict.items():
pred_start = v[1]
# Lookback and add preceding I- tokens
while pred_start - 1 > 0 and word_preds[pred_start-1] == f'I-{k}':
pred_start = pred_start -1
# Try to add the matching B- tag if immediately precedes the current I- sequence
if pred_start - 1 > 0 and word_preds[pred_start - 1] == f'B-{k}':
pred_start = pred_start - 1
all_preds.append((self.test_dataset.get_filename(curr_sample_id),
k,
' '.join(map(str, list(range(pred_start, v[2]))))))
output_df = pd.DataFrame(all_preds)
output_df.columns = ['id', 'class', 'predictionstring']
f1s = []
CLASSES = output_df['class'].unique()
for c in CLASSES:
pred_df = output_df.loc[output_df['class']==c].copy()
gt_df = self.test_df.loc[self.test_df['discourse_type']==c].copy()
f1 = score_feedback_comp(pred_df, gt_df)
f1s.append(f1)
for c in range(7-len(CLASSES)):
f1s.append(0)
return {"textoverlapfbeta": np.mean(f1s)}
class SaveBestModelCallback(TrainerCallback):
def __init__(self):
self.bestScore = 0
def on_train_begin(self, args, state, control, **kwargs):
assert args.evaluation_strategy != "no", "SaveBestModelCallback requires IntervalStrategy of steps or epoch"
def on_evaluate(self, args, state, control, metrics, **kwargs):
metric_value = metrics.get("eval_textoverlapfbeta")
if metric_value > self.bestScore:
print(f"** TextOverlapFBeta score improved from {np.round(self.bestScore, 4)} to {np.round(metric_value, 4)} **")
self.bestScore = metric_value
control.should_save = True
else:
print(f"TextOverlapFBeta score {np.round(metric_value, 4)} (Prev. Best {np.round(self.bestScore, 4)}) ")
valid_df = train_df.iloc[folds[SPLIT_NUM][1]].reset_index(drop=True)
train_df = train_df.iloc[folds[SPLIT_NUM][0]].reset_index(drop=True)
train_files = train_df['id'].unique()
valid_files = valid_df['id'].unique()
# accepts file path, returns tuple of (file_ID, txt, NER labels)
def generate_NER_labels_for_file(input_filename, df):
curr_id = input_filename.split('.')[0]
with open(os.path.join(TRAIN_DIR, '{}.txt'.format(input_filename))) as f:
curr_txt = f.read()
# Set all token labels initially to non-label
curr_labels = [ner_labels['O']] * len(curr_txt)
# Iterate thru all labels associated w/ file and update labels
curr_df = df[df['id']==curr_id]
for curr_discourse in curr_df.itertuples():
curr_discourse_label = curr_discourse.discourse_type
for curr_txt_idx in range(curr_discourse.discourse_start,
min(curr_discourse.discourse_end+1, len(curr_labels))):
if curr_txt_idx == curr_discourse.discourse_start:
iob_label = ner_labels['B-' + curr_discourse_label]
else:
iob_label = ner_labels['I-' + curr_discourse_label]
curr_labels[curr_txt_idx] = iob_label
assert curr_labels != [ner_labels['O']] * len(curr_txt)
return curr_id, curr_txt, curr_labels
with mp.Pool(NUM_CORES) as p:
ner_train_rows = p.map(partial(generate_NER_labels_for_file, df=train_df), train_files)
with mp.Pool(NUM_CORES) as p:
ner_valid_rows = p.map(partial(generate_NER_labels_for_file, df=valid_df), valid_files)
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL)
# Check is rust-based fast tokenizer
assert isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
def tokenize_and_align_labels(ner_raw_data):
tokenized_inputs = tokenizer([x[1] for x in ner_raw_data],
max_length=1536,
return_offsets_mapping=True,
truncation=True)
labels = []
word_ids = []
for i, char_label in enumerate([x[2] for x in ner_raw_data]):
curr_word_ids = tokenized_inputs.word_ids(batch_index=i)
curr_offset_mappings = tokenized_inputs['offset_mapping'][i]
previous_word_idx = None
label_ids = []
for j, word_idx in enumerate(curr_word_ids):
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
else:
# Use label of 1st character of word
# See offset that's 1 index after end of tokens for some reason
offset = curr_offset_mappings[j][0]
if offset!=0:
offset+=1
char_idx = min(offset, len(char_label)-1)
# char_idx = min(curr_offset_mappings[j][0], len(char_label)-1)
label_ids.append(char_label[char_idx])
previous_word_idx = word_idx
word_ids.append(curr_word_ids)
labels.append(label_ids)
tokenized_inputs['labels'] = labels
tokenized_inputs['word_ids'] = word_ids
tokenized_inputs['id'] = [x[0] for x in ner_raw_data]
return tokenized_inputs
tokenized_all_train = tokenize_and_align_labels(ner_train_rows)
tokenized_all_valid = tokenize_and_align_labels(ner_valid_rows)
class NERDataset(Dataset):
def __init__(self, input_dict):
self.input_dict = input_dict
def __getitem__(self, index):
return {k:self.input_dict[k][index] for k in self.input_dict.keys() if k not in {'id', 'offset_mapping', 'word_ids'}}
def get_filename(self, index):
return self.input_dict['id'][index]
def get_offset(self, index):
return self.input_dict['offset_mapping'][index]
def __len__(self):
return len(self.input_dict['input_ids'])
train_dataset = NERDataset(tokenized_all_train)
valid_dataset = NERDataset(tokenized_all_valid)
model = DebertaForTokenClassificationwithbiLSTM.from_pretrained(PRETRAINED_MODEL,
num_labels=len(ner_labels))
model_name = PRETRAINED_MODEL.split('/')[-1]
args = TrainingArguments(f'{model_name}-f{SPLIT_NUM}',
PRETRAINED_MODEL,
evaluation_strategy = 'steps',
eval_steps=500,
dataloader_num_workers=8,
learning_rate=LR,
log_level='warning',
fp16 = USE_FP16,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACCUM_STEPS,
gradient_checkpointing=True,
num_train_epochs=NUM_EPOCHS,
save_strategy='no',
save_total_limit=1)
data_collator = DataCollatorForTokenClassification(tokenizer,)
ce_loss = nn.CrossEntropyLoss()
jaccard_loss = JaccardLoss(log_loss=False, from_logits=True)
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
outputs = model(**inputs)
logits = outputs.get("logits")
loss = ce_loss(logits.view(-1, len(ner_labels)), labels.view(-1)) + jaccard_loss(logits.view(-1, len(ner_labels)), labels.view(-1))
return (loss, outputs) if return_outputs else loss
trainer = CustomTrainer(model,
args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
compute_metrics=TextOverlapFBetaScore(test_df=valid_df, test_dataset=valid_dataset),
callbacks=[SaveBestModelCallback],
data_collator=data_collator,
tokenizer=tokenizer)
trainer.train()