-
Notifications
You must be signed in to change notification settings - Fork 6
/
extract_betas.py
174 lines (145 loc) · 5.8 KB
/
extract_betas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 26 10:39:30 2014
Extracts the mean value of the masked voxels from a nifti image.
Dependencies: nibabel, numpy, scipy.
@author: tsalo
"""
import sys
import os.path
import nibabel as nb
import numpy as np
import scipy.io
global yes, y, no, n
yes = "yes"
y = "yes"
no = "no"
n = "no"
def str2bool(string):
"""
Returns boolean value based on string. True strings include 'yes', 'true',
't', '1', and 'y', along with any of their case variations.
"""
return string.lower() in ("yes", "true", "t", "1", "y")
def _try_index(list_, val):
"""
Indexes a list without throwing an error if the value isn't found.
"""
try:
return list_.index(val)
except:
return False
def get_spm_contrast_list(spm_file):
"""
Generates a list of contrasts tied to an SPM.mat file based on the
SPM.xCon field. Then allows for input of a vector of desired contrasts.
The names of the desired contrasts are outputted in a list
(wanted_contrasts).
To do:
- Extend to check multiple SPM.mat files for contrasts.
But do I really want that?
"""
mat = scipy.io.loadmat(spm_file, squeeze_me=True, struct_as_record=False)
spm = mat["SPM"]
contrast_names = []
contrast_files = []
for i, i_con in enumerate(spm.xCon):
contrast_names.append(str(i_con.name))
contrast_files.append(str(i_con.Vspm.fname))
print("%s\t%s" % (str(i), str(i_con.name)))
sure = False
while not sure:
wanted_index = input("Contrast list: ")
sure = str2bool(input("You sure (yes/no)? "))
wanted_contrasts = [contrast_names[i] for i in wanted_index]
return wanted_contrasts
def get_spm_contrast_files(spm_file, contrast_list):
"""
Generates a list of files corresponding to contrasts of interest, based on
the contrast name and the fields within the SPM.mat file. I'm not sure if
it can handle missing contrasts.
"""
mat = scipy.io.loadmat(spm_file, squeeze_me=True, struct_as_record=False)
spm = mat["SPM"]
full_file_list = [str(i_con.Vcon.fname) for i_con in spm.xCon]
full_contrast_list = [str(i_con.name) for i_con in spm.xCon]
contrast_index = [_try_index(full_contrast_list, contrast) for contrast in
contrast_list]
file_list = [full_file_list[index] for index in contrast_index]
return file_list
def extract_betas(nifti_image, mask_image):
"""
Extracts mean value from nifti_image within region defined by mask_image.
Attempts have been made to account for header differences between
nifti_image and mask_image. Not 100% sure they work at present.
"""
if os.path.isfile(nifti_image):
nii_img = nb.load(nifti_image)
nii_vals = np.array(nii_img.get_data())
nii_header = nii_img.get_header()
nii_shape = nii_header.get_data_shape()
nii_affine = nii_header.get_qform()
else:
print("Variable nifti_image points to non-existent file.")
return ""
if os.path.isfile(mask_image):
mask_img = nb.load(mask_image)
mask_header = mask_img.get_header()
mask_shape = mask_header.get_data_shape()
mask_affine = mask_header.get_qform()
if mask_shape == nii_shape:
mask_index = np.where(mask_img.get_data())
if ~(mask_affine == nii_affine).all():
print("Affine matrices don't match up! " +
"Mask index must be adjusted.")
zero_row = np.zeros(len(mask_index[0]))
m_idx_4d = np.vstack((mask_index, zero_row))
shift_matrix = np.linalg.inv(nii_affine).dot(mask_affine)
adj_m_index = shift_matrix.dot(m_idx_4d).astype(int)[:3]
mask_index = tuple(map(tuple, adj_m_index))
masked_vals = nii_vals[mask_index]
nanmasked_nii = np.ma.masked_array(masked_vals,
np.isnan(masked_vals))
else:
raise ValueError("Mask and nifti image are " +
"different shapes/sizes.")
return nanmasked_nii.mean()
else:
raise ValueError("Variable mask_image points to non-existent file.")
def return_spm_betas(spm_path, wanted_contrasts, mask_file):
"""
Given the path to an SPM.mat file, a list of desired contrasts, and a mask,
calls other extract_betas functions to create list of mean values (one mean
for each contrast).
"""
beta_values = []
wanted_file_list = get_spm_contrast_files(spm_path + "/SPM.mat",
wanted_contrasts)
for i_con, contrast in enumerate(wanted_contrasts):
beta_file = spm_path + wanted_file_list[i_con]
beta_value = extract_betas(beta_file, mask_file)
beta_values.append(beta_value)
return beta_values
def extract_spm_timeseries(spm_file, contrast_list):
print("Let's do this! At some point...")
def get_fsl_contrast_list(design_file):
print("Just kidding! I don't know how to do this yet. " +
"But it's on the to-do list!")
def get_fsl_contrast_files(design_file, contrast_list):
print("Just kidding! I don't know how to do this yet. " +
"But it's on the to-do list!")
def return_fsl_betas(feat_dir, wanted_contrasts, mask_file):
print("Just kidding! I don't know how to do this yet. " +
"But it's on the to-do list!")
if __name__ == "__main__":
if len(sys.argv) == 1:
raise ValueError("Variable nifti_file not given.")
elif len(sys.argv) == 2:
nifti_file = sys.argv[1]
mean = extract_betas(nifti_file)
elif len(sys.argv) == 3:
nifti_file = sys.argv[1]
mask_file = sys.argv[2]
mean = extract_betas(nifti_file, mask_file)
else:
raise ValueError("Too many inputs given.")