-
Notifications
You must be signed in to change notification settings - Fork 6
/
batch_eb.py
64 lines (53 loc) · 2.33 KB
/
batch_eb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 16 17:40:54 2014
Summarizes betas and calls extract_betas.
@author: taylorsalo
"""
import edit_csv as ec
import extract_betas as eb
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
subject_list = "/nfs/ep2/AX/project_folders/072313_EPC_BP_SZ/subject_list.csv"
file_sup_path = "/nfs/ep2/AX/first_levels/00_MONTH/"
file_sub_path = "/MTU/func_an_SPM8/"
mask_file = "/nfs/ep2/masks/PickAtlas/B46_L_d0.nii"
group_list = ["HC", "SZ", "BP"]
subjects = ec.read_csv(subject_list, group_list)
wanted_contrasts = eb.get_spm_contrast_list(file_sup_path + subjects[0][1] +
file_sub_path + "SPM.mat")
headers = ["ID", "Group"] + wanted_contrasts
out_struct = pd.DataFrame(columns=headers)
for group in subjects:
for j_subj in range(1, len(group)):
beta_values = []
wanted_file_list = eb.get_spm_contrast_files(file_sup_path +
group[j_subj] +
file_sub_path +
"SPM.mat",
wanted_contrasts)
for k_con, contrast in enumerate(wanted_contrasts):
beta_file = (file_sup_path + group[j_subj] + file_sub_path +
wanted_file_list[k_con])
print(beta_file)
beta_value = eb.main(beta_file, mask_file)
beta_values.append(beta_value)
out_struct.loc[len(out_struct)] = ([group[j_subj], group[0]] +
beta_values)
grouped = out_struct.groupby('Group')
for con in wanted_contrasts:
out_struct[con] = out_struct[con].astype(float)
mean_ = grouped.aggregate(lambda x: np.mean(x)).transpose()
mean_ = mean_.reindex_axis(group_list, axis=1)
mean_ = mean_.reindex_axis(wanted_contrasts, axis=0)
ste_ = grouped.aggregate(lambda x: np.std(x) / np.sqrt(x.count())).transpose()
ste_ = ste_.reindex_axis(group_list, axis=1)
ste_ = ste_.reindex_axis(wanted_contrasts, axis=0)
max_value = (mean_ + ste_).max().max()
min_value = (mean_ - ste_).min().min()
range_ = max_value - min_value
# Use max_value, min_value, and range_ to determine scale for y-axis.
ax = mean_.plot(kind='bar', yerr=ste_, rot=45)
plt.axhline(0, color='k')
plt.tight_layout()