forked from WyvernTKC/cpuminer-gr-avx2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simd-utils.h
181 lines (165 loc) · 6.92 KB
/
simd-utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#if !defined(SIMD_UTILS_H__)
#define SIMD_UTILS_H__ 1
//////////////////////////////////////////////////////////////////////
//
// SIMD utilities
//
// Not to be confused with the hashing function of the same name. This
// is about Single Instruction Multiple Data programming using CPU
// features such as SSE and AVX.
//
// This header is the entry point to a suite of macros and functions
// to perform basic operations on vectors that are useful in crypto
// mining. Some of these functions have native CPU support for scalar
// data but not for vectors. The main categories are bit rotation
// and endian byte swapping
//
// An attempt was made to make the names as similar as possible to
// Intel's intrinsic function format. Most variations are to avoid
// confusion with actual Intel intrinsics, brevity, and clarity.
//
// This suite supports some operations on regular 64 bit integers
// as well as 128 bit integers available on recent versions of Linux
// and GCC.
//
// It also supports various vector sizes on CPUs that meet the minimum
// requirements.
//
// The minimum for any real work is a 64 bit CPU with SSE2,
// ie an the Intel Core 2.
//
// Following are the minimum requirements for each vector size. There
// is no significant 64 bit vectorization therefore SSE2 is the practical
// minimum for using this code.
//
// MMX: 64 bit vectors
// SSE2: 128 bit vectors (64 bit CPUs only, such as Intel Core2.
// AVX2: 256 bit vectors (Starting with Intel Haswell and AMD Ryzen)
// AVX512: 512 bit vectors (Starting with SkylakeX)
//
// Most functions are avalaible at the stated levels but in rare cases
// a higher level feature may be required with no compatible alternative.
// Some SSE2 functions have versions optimized for higher feature levels
// such as SSSE3 or SSE4.1 that will be used automatically on capable
// CPUs.
//
// The vector size boundaries are respected to maintain compatibility.
// For example, an instruction introduced with AVX2 may improve 128 bit
// vector performance but will not be implemented. A CPU with AVX2 will
// tend to use 256 bit vectors. On a practical level AVX512 does introduce
// bit rotation instructions for 128 and 256 bit vectors in addition to
// its own 5a12 bit vectors. These will not be back ported to replace the
// SW implementations for the smaller vectors. This policy may be reviewed
// in the future once AVX512 is established.
//
// Strict alignment of data is required: 16 bytes for 128 bit vectors,
// 32 bytes for 256 bit vectors and 64 bytes for 512 bit vectors. 64 byte
// alignment is recommended in all cases for best cache alignment.
//
// Windows has problems with function vector arguments larger than
// 128 bits. Stack alignment is only guaranteed to 16 bytes. Always use
// pointers for larger vectors in function arguments. Macros can be
// used for larger value arguments.
//
// An attempt was made to make the names as similar as possible to
// Intel's intrinsic function format. Most variations are to avoid
// confusion with actual Intel intrinsics, brevity, and clarity
//
// The main differences are:
//
// - the leading underscore(s) "_" and the "i" are dropped from the
// prefix of vector instructions.
// - "mm64" and "mm128" used for 64 and 128 bit prefix respectively
// to avoid the ambiguity of "mm".
// - the element size does not include additional type specifiers
// like "epi".
// - some macros contain value args that are updated.
// - specialized shift and rotate functions that move elements around
// use the notation "1x32" to indicate the distance moved as units of
// the element size.
// - there is a subset of some functions for scalar data. They may have
// no prefix nor vec-size, just one size, the size of the data.
// - Some integer functions are also defined which use a similar notation.
//
// Function names follow this pattern:
//
// prefix_op[esize]_[vsize]
//
// Prefix: usually the size of the largest vectors used. Following
// are some examples:
//
// u64: unsigned 64 bit integer function
// i128: signed 128 bit integer function (rarely used)
// m128: 128 bit vector identifier
// mm128: 128 bit vector function
//
// op: describes the operation of the function or names the data
// identifier.
//
// esize: optional, element size of operation
//
// vsize: optional, lane size used when a function operates on elements
// of vectors within lanes of a vector.
//
// Ex: mm256_ror1x64_128 rotates each 128 bit lane of a 256 bit vector
// right by 64 bits.
//
// Vector constants
//
// Vector constants are a big problem because they technically don't exist.
// All vectors used as constants either reside in memory or must be genererated
// at run time at significant cost. The cost of generating a constant
// increases non-linearly with the number of vector elements. A 4 element
// vector costs between 7 and 11 clocks to generate, an 8 element vector
// is 15-25 clocks. There are also additional clock due to data dependency
// stalls.
//
// Vector constants are often used as control indexes for permute, blend, etc,
// where generating the index can be over 90% of the operation. This is
// where the problem occurs. An instruction that only requires one to 3
// clocks needs may times more just to build the index argument.
//
// There is very little a programmer can do to avoid the worst case scenarios.
// Smaller integers can be merged to form 64 bit integers, and vectors with
// repeated elements can be generated more efficiently but they have limited
// benefit and limited application.
//
// If a vector constant is to be used repeatedly it is better to define a local
// variable to generate the constant only once.
//
// If a sequence of constants is to be used it can be more efficient to
// use arithmetic with already existing constants to generate new ones.
//
// ex: const __m512i one = m512_one_64;
// const __m512i two = _mm512_add_epi64( one, one );
//
//////////////////////////////////////////////////////////////////////////
#include <inttypes.h>
#include <x86intrin.h>
#include <memory.h>
#include <stdlib.h>
#include <stdbool.h>
// 64 and 128 bit integers.
#include "simd-utils/simd-int.h"
#if defined(__MMX__)
// 64 bit vectors
#include "simd-utils/simd-64.h"
#if defined(__SSE2__)
// 128 bit vectors
#include "simd-utils/simd-128.h"
#if defined(__AVX__)
// 256 bit vector basics
#include "simd-utils/simd-256.h"
#if defined(__AVX2__)
// Utilities that require AVX2 are defined in simd-256.h.
// Skylake-X has all these
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// 512 bit vectors
#include "simd-utils/simd-512.h"
#endif // AVX512
#endif // AVX2
#endif // AVX
#endif // SSE2
#endif // MMX
#include "simd-utils/intrlv.h"
#endif // SIMD_UTILS_H__