-
Notifications
You must be signed in to change notification settings - Fork 6
/
game.py
696 lines (643 loc) · 27.4 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# -*- coding: utf-8 -*-
#Copyright (c) 2011 Walter Bender
# Port To GTK3:
# Ignacio Rodriguez <[email protected]>
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# You should have received a copy of the GNU General Public License
# along with this library; if not, write to the Free Software
# Foundation, 51 Franklin Street, Suite 500 Boston, MA 02110-1335 USA
from gi.repository import Gtk, Gdk, GdkPixbuf, GLib
import cairo
import os
import time
from math import sqrt, pi
from random import uniform
from sugar3.activity.activity import get_activity_root
from gettext import gettext as _
import traceback
import logging
_logger = logging.getLogger('turtle-in-a-pond-activity')
try:
from sugar3.graphics import style
GRID_CELL_SIZE = style.GRID_CELL_SIZE
except ImportError:
GRID_CELL_SIZE = 0
from sprites import Sprites, Sprite
FILL = 1
STROKE = 0
THIRTEEN = 13
DOT_SIZE = 20
DOT_SIZE_GAMEOVER = 70
CIRCLE = [[(0, -1), (1, 0), (0, 1), (-1, 1), (-1, 0), (-1, -1)],
[(1, -1), (1, 0), (1, 1), (0, 1), (-1, 0), (0, -1)]]
''' Simple strategy: head to daylight or randomly check for an open dot
turtle is the (col, row) of the current turtle position '''
BEGINNER_STRATEGY = 'def _turtle_strategy(self, turtle):\n\
dots = self._surrounding_dots(turtle)\n\
n = int(uniform(0, 6))\n\
for i in range(6):\n\
if not self._dots[dots[(i + n) % 6]].type:\n\
self._orientation = (i + n) % 6\n\
return self._dot_to_grid(dots[(i + n) % 6])\n\
self._orientation = (i + n) % 6\n\
return turtle\n'
INTERMEDIATE_STRATEGY = 'def _turtle_strategy(self, turtle):\n\
dots = self._surrounding_dots(turtle)\n\
for i in range(6): # search for an edge\n\
if self._dots[dots[i]].type is None:\n\
self._orientation = i\n\
return self._dot_to_grid(dots[i])\n\
if self._daylight_ahead(turtle):\n\
return self._dot_to_grid(dots[self._orientation])\n\
n = int(uniform(0, 6)) # choose a random orientation\n\
for i in range(6): # search for an opening\n\
if not self._dots[dots[(i + n) % 6]].type:\n\
self._orientation = (i + n) % 6\n\
return self._dot_to_grid(dots[(i + n) % 6])\n\
return turtle\n'
EXPERT_STRATEGY = 'def _turtle_strategy(self, turtle):\n\
dots = self._surrounding_dots(turtle)\n\
for i in range(6):\n\
if self._dots[dots[i]].type is None:\n\
self._orientation = i\n\
return self._dot_to_grid(dots[i])\n\
dots_ordered_by_weight = self._ordered_weights(turtle)\n\
for i in range(6):\n\
self._orientation = dots.index(dots_ordered_by_weight[i])\n\
if self._daylight_ahead(turtle):\n\
return self._dot_to_grid(dots[self._orientation])\n\
n = int(uniform(0, 6))\n\
for i in range(6):\n\
if not self._dots[dots[(i + n) % 6]].type:\n\
self._orientation = (i + n) % 6\n\
return self._dot_to_grid(dots[(i + n) % 6])\n\
self._orientation = (i + n) % 6\n\
return turtle\n'
class Game():
def __init__(self, canvas, parent=None, colors=['#A0FFA0', '#FF8080']):
self._activity = parent
self._colors = colors
self._canvas = canvas
parent.show_all()
self._canvas.add_events(Gdk.EventMask.BUTTON_PRESS_MASK)
self._canvas.connect("draw", self.__draw_cb)
self._canvas.connect("button-press-event", self._button_press_cb)
self._width = Gdk.Screen.width()
self._height = Gdk.Screen.height() - (GRID_CELL_SIZE * 1.5)
self._scale = self._height / (14.0 * DOT_SIZE * 1.2)
self._scale_gameover = self._height / (4.0 * DOT_SIZE_GAMEOVER * 1.2)
self._dot_size = int(DOT_SIZE * self._scale)
self._dot_size_gameover = int(DOT_SIZE_GAMEOVER * self._scale)
self._turtle_offset = 0
self._space = int(self._dot_size / 5.)
self._space_gameover = int(self._dot_size_gameover / 5.)
self._orientation = 0
self.level = 0
self.custom_strategy = None
self.strategies = [BEGINNER_STRATEGY, INTERMEDIATE_STRATEGY,
EXPERT_STRATEGY, self.custom_strategy]
self.strategy = self.strategies[self.level]
self._timeout_id = None
self.best_time = self.load_best_time()
# Generate the sprites we'll need...
self._sprites = Sprites(self._canvas)
self._dots = []
self._gameover = []
self._your_time = []
self._best_time = []
self._win_lose = []
for y in range(THIRTEEN):
for x in range(THIRTEEN):
offset_x = int((self._width - THIRTEEN * (self._dot_size + \
self._space) - self._space) / 2.)
if y % 2 == 1:
offset_x += int((self._dot_size + self._space) / 2.)
if x == 0 or y == 0 or x == THIRTEEN - 1 or y == THIRTEEN - 1:
self._dots.append(
Sprite(self._sprites,
offset_x + x * (self._dot_size + self._space),
y * (self._dot_size + self._space),
self._new_dot('#B0B0B0', self._dot_size)))
else:
self._dots.append(
Sprite(self._sprites,
offset_x + x * (self._dot_size + self._space),
y * (self._dot_size + self._space),
self._new_dot(self._colors[FILL],
self._dot_size)))
self._dots[-1].type = False # not set
# Put a turtle at the center of the screen...
self._turtle_images = []
self._rotate_turtle(self._new_turtle())
self._turtle = Sprite(self._sprites, 0, 0,
self._turtle_images[0])
self._move_turtle(self._dots[int(THIRTEEN * THIRTEEN / 2)].get_xy())
# ...and initialize.
self._all_clear()
def _move_turtle(self, pos):
''' Move turtle and add its offset '''
self._turtle.move(pos)
self._turtle.move_relative(
(-self._turtle_offset, -self._turtle_offset))
def _all_clear(self):
''' Things to reinitialize when starting up a new game. '''
# Clear dots
for gameover_shape in self._gameover:
gameover_shape.hide()
for win_lose_shape in self._win_lose:
win_lose_shape.hide()
for your_time_shape in self._your_time:
your_time_shape.hide()
for highscore_shape in self._best_time:
highscore_shape.hide()
for dot in self._dots:
if dot.type:
dot.type = False
dot.set_shape(self._new_dot(self._colors[FILL],
self._dot_size))
dot.set_label('')
dot.set_layer(100)
self._turtle.set_layer(100)
# Recenter the turtle
self._move_turtle(self._dots[int(THIRTEEN * THIRTEEN / 2)].get_xy())
self._turtle.set_shape(self._turtle_images[0])
self._set_label('')
if self._timeout_id is not None:
GLib.source_remove(self._timeout_id)
self._timeout_id = None
def new_game(self, saved_state=None):
''' Start a new game. '''
self.gameover_flag = False
self.game_lost = False
self._all_clear()
# Fill in a few dots to start
for i in range(15):
n = int(uniform(0, THIRTEEN * THIRTEEN))
if self._dots[n].type is not None:
self._dots[n].type = True
self._dots[n].set_shape(self._new_dot(self._colors[STROKE],
self._dot_size))
# Calculate the distances to the edge
self._initialize_weights()
self.game_start_time = time.time()
self.strategy = self.strategies[self.level]
self._timeout_id = None
def _set_label(self, string):
''' Set the label in the toolbar or the window frame. '''
self._activity.status.set_label(string)
def _button_press_cb(self, win, event):
win.grab_focus()
x, y = list(map(int, event.get_coords()))
spr = self._sprites.find_sprite((x, y), inverse=True)
if spr == None:
return
if spr.type is not None and not spr.type:
spr.type = True
spr.set_shape(self._new_dot(self._colors[STROKE], self._dot_size))
self._weights[self._dots.index(spr)] = 1000
self._test_game_over(self._move_the_turtle())
return True
def _find_the_turtle(self):
turtle_pos = self._turtle.get_xy()
turtle_dot = None
for dot in self._dots:
pos = dot.get_xy()
# Turtle is offset
if pos[0] == turtle_pos[0] + self._turtle_offset and \
pos[1] == turtle_pos[1] + self._turtle_offset:
turtle_dot = self._dots.index(dot)
break
if turtle_dot is None:
_logger.debug('Cannot find the turtle...')
return None
return turtle_dot
def _move_the_turtle(self):
''' Move the turtle after each click '''
self._turtle_dot = self._find_the_turtle()
if self._turtle_dot is None:
return
# Given the col and row of the turtle, do something
new_dot = self._grid_to_dot(
self._my_strategy_import(self.strategy,
self._dot_to_grid(self._turtle_dot)))
self._move_turtle(self._dots[new_dot].get_xy())
# And set the orientation
self._turtle.set_shape(self._turtle_images[self._orientation])
return new_dot
def _test_game_over(self, new_dot):
''' Check to see if game is over '''
if new_dot is None:
return
if self._dots[new_dot].type is None:
# Game-over feedback
self._once_around = False
self.game_stop_time = time.time()
self.gameover_flag = True
self._happy_turtle_dance()
self._timeout_id = GLib.timeout_add(10000, self._game_over)
return True
c = int(self._turtle_dot / THIRTEEN) % 2
if self._dots[
new_dot + CIRCLE[c][0][0] + THIRTEEN * CIRCLE[c][0][1]].type and \
self._dots[
new_dot + CIRCLE[c][1][0] + THIRTEEN * CIRCLE[c][1][1]].type and \
self._dots[
new_dot + CIRCLE[c][2][0] + THIRTEEN * CIRCLE[c][2][1]].type and \
self._dots[
new_dot + CIRCLE[c][3][0] + THIRTEEN * CIRCLE[c][3][1]].type and \
self._dots[
new_dot + CIRCLE[c][4][0] + THIRTEEN * CIRCLE[c][4][1]].type and \
self._dots[
new_dot + CIRCLE[c][5][0] + THIRTEEN * CIRCLE[c][5][1]].type:
# Game-over feedback
for dot in self._dots:
dot.set_label(':)')
self.game_stop_time = time.time()
self.gameover_flag = True
self._timeout_id = GLib.timeout_add(4000, self._game_over)
return True
return False
def _game_over(self):
best_seconds = self.best_time % 60
best_minutes = self.best_time // 60
self.elapsed_time = int(self.game_stop_time - self.game_start_time)
second = self.elapsed_time % 60
minute = self.elapsed_time // 60
for dot in self._dots:
dot.hide()
self._turtle.hide()
offset_y = int(self._space_gameover / 4.)
offset_x = int((self._width - 6 * self._dot_size_gameover -
5 * self._space_gameover) / 2.)
y = 1.5
for x in range(2, 6):
self._gameover.append(
Sprite(self._sprites,
offset_x + (x - 0.50) * self._dot_size_gameover,
y * (self._dot_size + self._space) + offset_y,
self._new_dot(self._colors[FILL],
self._dot_size_gameover)))
self._gameover[-1].type = -1 # No image
self._gameover[-1].set_label_attributes(72)
text = [
"☻",
" Game ",
" Over ",
"☻"
]
self.rings(len(text), text, self._gameover)
y = 4.5
for x in range(2, 6):
self._win_lose.append(
Sprite(self._sprites,
offset_x + (x - 0.50) * self._dot_size_gameover,
y * (self._dot_size + self._space) + offset_y,
self._new_dot(self._colors[FILL],
self._dot_size_gameover)))
self._win_lose[-1].type = -1 # No image
self._win_lose[-1].set_label_attributes(72)
text_win_best_time = [
"☻",
" YOU ",
" WON ",
"☻"
]
text_lose = [
"☹",
" YOU ",
" LOST ",
"☹"
]
text_win = [
"☻",
" GOOD ",
" JOB ",
"☻"
]
if self.game_lost:
self.rings(len(text_lose), text_lose, self._win_lose)
elif self.elapsed_time <= self.best_time:
self.rings(
len(text_win_best_time),
text_win_best_time,
self._win_lose)
else:
self.rings(len(text_win), text_win, self._win_lose)
y = 7.5
for x in range(2, 5):
self._your_time.append(
Sprite(self._sprites,
offset_x + x * self._dot_size_gameover,
y * (self._dot_size + self._space),
self._new_dot(self._colors[FILL],
self._dot_size_gameover)))
self._your_time[-1].type = -1 # No image
self._your_time[-1].set_label_attributes(72)
text = [
" your ",
" time: ",
(' {:02d}:{:02d} '.format(minute, second))
]
self.rings(len(text), text, self._your_time)
y = 10.5
for x in range(2, 5):
self._best_time.append(
Sprite(self._sprites,
offset_x + x * self._dot_size_gameover,
y * (self._dot_size + self._space),
self._new_dot(self._colors[FILL],
self._dot_size_gameover)))
self._best_time[-1].type = -1 # No image
self._best_time[-1].set_label_attributes(72)
if self.elapsed_time <= self.best_time and not self.game_lost:
self.best_time = self.elapsed_time
best_seconds = second
best_minutes = minute
text = [
" best ",
" time: ",
(' {:02d}:{:02d} '.format(best_minutes, best_seconds))
]
self.rings(len(text), text, self._best_time)
self.save_best_time()
self._timeout_id = GLib.timeout_add(7000, self.new_game)
def rings(self, num, text, shape):
i = 0
for x in range(num):
shape[x].type = -1
shape[x].set_shape(self._new_dot(
self._colors[FILL], self._dot_size_gameover))
shape[x].set_label(text[i])
shape[x].set_layer(100)
i += 1
def _grid_to_dot(self, pos):
''' calculate the dot index from a column and row in the grid '''
return pos[0] + pos[1] * THIRTEEN
def _dot_to_grid(self, dot):
''' calculate the grid column and row for a dot '''
return [dot % THIRTEEN, int(dot / THIRTEEN)]
def _happy_turtle_dance(self):
''' Turtle dances along the edge '''
self.game_lost = True
i = self._find_the_turtle()
if i == 0:
if self._once_around:
return
else:
self._once_around = True
_logger.debug(i)
x, y = self._dot_to_grid(i)
if y == 0:
x += 1
if x == 0:
y -= 1
if x == THIRTEEN - 1:
y += 1
if y == THIRTEEN - 1:
x -= 1
i = self._grid_to_dot((x, y))
self._dots[i].set_label(':)')
self._move_turtle(self._dots[i].get_xy())
self._orientation += 1
self._orientation %= 6
self._turtle.set_shape(self._turtle_images[self._orientation])
self._timeout_id = GLib.timeout_add(250, self._happy_turtle_dance)
def _ordered_weights(self, pos):
''' Returns the list of surrounding points sorted by their
distance to the edge '''
dots = self._surrounding_dots(pos)
dots_and_weights = []
for dot in dots:
dots_and_weights.append((dot, self._weights[dot]))
sorted_dots = sorted(dots_and_weights, key=lambda foo: foo[1])
for i in range(6):
dots[i] = sorted_dots[i][0]
return dots
def _daylight_ahead(self, pos):
''' Returns true if there is a straight path to the edge from
the current position/orientation '''
dots = self._surrounding_dots(pos)
while True:
dot_type = self._dots[dots[self._orientation]].type
if dot_type is None:
return True
elif dot_type:
return False
else: # keep looking
pos = self._dot_to_grid(dots[self._orientation])
dots = self._surrounding_dots(pos)
def _surrounding_dots(self, pos):
''' Returns dots surrounding a position in the grid '''
dots = []
evenodd = pos[1] % 2
for i in range(6):
col = pos[0] + CIRCLE[evenodd][i][0]
row = pos[1] + CIRCLE[evenodd][i][1]
dots.append(self._grid_to_dot((col, row)))
return dots
def _initialize_weights(self):
''' How many steps to an edge? '''
self._weights = []
for d, dot in enumerate(self._dots):
if dot.type is None:
self._weights.append(0)
elif dot.type:
self._weights.append(1000)
else:
pos = self._dot_to_grid(d)
pos2 = (THIRTEEN - pos[0], THIRTEEN - pos[1])
self._weights.append(min(min(pos[0], pos2[0]),
min(pos[1], pos2[1])))
def _my_strategy_import(self, f, arg):
''' Run Python code passed as argument '''
userdefined = {}
try:
exec(f, globals(), userdefined)
return userdefined['_turtle_strategy'](self, arg)
except ZeroDivisionError as e:
self._set_label('Python zero-divide error: {}'.format(e))
except ValueError as e:
self._set_label('Python value error: {}'.format(e))
except SyntaxError as e:
self._set_label('Python syntax error: {}'.format(e))
except NameError as e:
self._set_label('Python name error: {}'.format(e))
except OverflowError as e:
self._set_label('Python overflow error: {}'.format(e))
except TypeError as e:
self._set_label('Python type error: {}'.format(e))
except:
self._set_label('Python error')
traceback.print_exc()
return None
def __draw_cb(self, canvas, cr):
self._sprites.redraw_sprites(cr=cr)
def do_expose_event(self, event):
''' Handle the expose-event by drawing '''
# Restrict Cairo to the exposed area
cr = self._canvas.window.cairo_create()
cr.rectangle(event.area.x, event.area.y,
event.area.width, event.area.height)
cr.clip()
# Refresh sprite list
self._sprites.redraw_sprites(cr=cr)
def _destroy_cb(self, win, event):
Gtk.main_quit()
def _new_dot(self, color, dot_size):
''' generate a dot of a color color '''
self._stroke = color
self._fill = color
self._svg_width = dot_size
self._svg_height = dot_size
return svg_str_to_pixbuf(
self._header() + \
self._circle(dot_size / 2., dot_size / 2.,
dot_size / 2.) + \
self._footer())
def _new_turtle(self):
''' generate a turtle '''
self._svg_width = self._dot_size * 2
self._svg_height = self._dot_size * 2
self._stroke = '#101010'
self._fill = '#404040'
return svg_str_to_pixbuf(
self._header() + \
self._turtle() + \
self._footer())
def _rotate_turtle(self, image):
w, h = image.get_width(), image.get_height()
nw = nh = int(sqrt(w * w + h * h))
for i in range(6):
surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh)
context = cairo.Context(surface)
context.translate(w / 2., h / 2.)
context.rotate((30 + i * 60) * pi / 180.)
context.translate(-w / 2., -h / 2.)
Gdk.cairo_set_source_pixbuf(context, image, 0, 0)
context.rectangle(0, 0, nw, nh)
context.fill()
self._turtle_images.append(surface)
self._turtle_offset = int(self._dot_size / 2.)
def _header(self):
return '<svg\n' + 'xmlns:svg="http://www.w3.org/2000/svg"\n' + \
'xmlns="http://www.w3.org/2000/svg"\n' + \
'xmlns:xlink="http://www.w3.org/1999/xlink"\n' + \
'version="1.1"\n' + 'width="' + str(self._svg_width) + '"\n' + \
'height="' + str(self._svg_height) + '">\n'
def _circle(self, r, cx, cy):
return '<circle style="fill:' + str(self._fill) + ';stroke:' + \
str(self._stroke) + ';" r="' + str(r - 0.5) + '" cx="' + \
str(cx) + '" cy="' + str(cy) + '" />\n'
def _footer(self):
return '</svg>\n'
def _turtle(self):
svg = '<g\ntransform="scale(%.1f, %.1f)">\n' % (
self._svg_width / 60., self._svg_height / 60.)
svg += '%s%s%s%s%s%s%s%s' % (' <path d="M 27.5 48.3 ',
'C 26.9 48.3 26.4 48.2 25.9 48.2 L 27.2 50.5 L 28.6 48.2 ',
'C 28.2 48.2 27.9 48.3 27.5 48.3 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke,
'" />\n')
svg += '%s%s%s%s%s%s%s%s%s%s' % (' <path d="M 40.2 11.7 ',
'C 38.0 11.7 36.2 13.3 35.8 15.3 ',
'C 37.7 16.7 39.3 18.4 40.5 20.5 ',
'C 42.8 20.4 44.6 18.5 44.6 16.2 ',
'C 44.6 13.7 42.6 11.7 40.2 11.7 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke, '" />\n')
svg += '%s%s%s%s%s%s%s%s%s%s' % (' <path d="M 40.7 39.9 ',
'C 39.5 42.1 37.9 44.0 35.9 45.4 ',
'C 36.4 47.3 38.1 48.7 40.2 48.7 ',
'C 42.6 48.7 44.6 46.7 44.6 44.3 ',
'C 44.6 42.0 42.9 40.2 40.7 39.9 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke, '" />\n')
svg += '%s%s%s%s%s%s%s%s%s%s' % (' <path d="M 14.3 39.9 ',
'C 12.0 40.1 10.2 42.0 10.2 44.3 ',
'C 10.2 46.7 12.2 48.7 14.7 48.7 ',
'C 16.7 48.7 18.5 47.3 18.9 45.4 ',
'C 17.1 43.9 15.5 42.1 14.3 39.9 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke, '" />\n')
svg += '%s%s%s%s%s%s%s%s%s%s' % (' <path d="M 19.0 15.4 ',
'C 18.7 13.3 16.9 11.7 14.7 11.7 ',
'C 12.2 11.7 10.2 13.7 10.2 16.2 ',
'C 10.2 18.5 12.1 20.5 14.5 20.6 ',
'C 15.7 18.5 17.2 16.8 19.0 15.4 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke, '" />\n')
svg += '%s%s%s%s%s%s%s%s%s%s%s%s' % (' <path d="M 27.5 12.6 ',
'C 29.4 12.6 31.2 13.0 32.9 13.7 ',
'C 33.7 12.6 34.1 11.3 34.1 9.9 ',
'C 34.1 6.2 31.1 3.2 27.4 3.2 ',
'C 23.7 3.2 20.7 6.2 20.7 9.9 ',
'C 20.7 11.3 21.2 12.7 22.0 13.7 ',
'C 23.7 13.0 25.5 12.6 27.5 12.6 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke, '" />\n')
svg += '%s%s%s%s%s%s%s%s%s%s%s%s' % (' <path d="M 43.1 30.4 ',
'C 43.1 35.2 41.5 39.7 38.5 43.0 ',
'C 35.6 46.4 31.6 48.3 27.5 48.3 ',
'C 23.4 48.3 19.4 46.4 16.5 43.0 ',
'C 13.5 39.7 11.9 35.2 11.9 30.4 ',
'C 11.9 20.6 18.9 12.6 27.5 12.6 ',
'C 36.1 12.6 43.1 20.6 43.1 30.4 Z" stroke_width="3.5" ',
'fill="', self._fill, ';" stroke="', self._stroke, '" />\n')
svg += '%s%s%s%s%s' % (' <path d="M 25.9 33.8 L 24.3 29.1 ',
'L 27.5 26.5 L 31.1 29.2 L 29.6 33.8 Z" stroke_width="3.5" ',
'fill="', self._stroke, ';" stroke="none" />\n')
svg += '%s%s%s%s%s%s' % (' <path d="M 27.5 41.6 ',
'C 23.5 41.4 22.0 39.5 22.0 39.5 L 25.5 35.4 L 30.0 35.5 ',
'L 33.1 39.7 C 33.1 39.7 30.2 41.7 27.5 41.6 Z" ',
'stroke_width="3.5" fill="', self._stroke,
';" stroke="none" />\n')
svg += '%s%s%s%s%s%s' % (' <path d="M 18.5 33.8 ',
'C 17.6 30.9 18.6 27.0 18.6 27.0 L 22.6 29.1 L 24.1 33.8 ',
'L 20.5 38.0 C 20.5 38.0 19.1 36.0 18.4 33.8 Z" ',
'stroke_width="3.5" fill="', self._stroke,
';" stroke="none" />\n')
svg += '%s%s%s%s%s%s' % (' <path d="M 19.5 25.1 ',
'C 19.5 25.1 20.0 23.2 22.5 21.3 ',
'C 24.7 19.7 27.0 19.6 27.0 19.6 L 26.9 24.6 L 23.4 27.3 ',
'L 19.5 25.1 Z" stroke_width="3.5" fill="', self._stroke,
';" stroke="none" />\n')
svg += '%s%s%s%s%s%s' % (' <path d="M 32.1 27.8 L 28.6 25.0 ',
'L 29 19.8 C 29 19.8 30.8 19.7 33.0 21.4 ',
'C 35.2 23.2 36.3 26.4 36.3 26.4 L 32.1 27.8 Z" ',
'stroke_width="3.5" fill="', self._stroke,
';" stroke="none" />\n')
svg += '%s%s%s%s%s%s' % (' <path d="M 31.3 34.0 L 32.6 29.6 ',
'L 36.8 28.0 C 36.8 28.0 37.5 30.7 36.8 33.7 ',
'C 36.2 36.0 34.7 38.1 34.7 38.1 L 31.3 34.0 Z" ',
'stroke_width="3.5" fill="', self._stroke,
';" stroke="none" />\n')
svg += '</g>\n'
return svg
def save_best_time(self):
file_path = os.path.join(get_activity_root(), 'data', 'best-time')
best_time = [180]
if os.path.exists(file_path):
with open(file_path, "r") as fp:
best_time = fp.readlines()
int_best_time = int(best_time[0])
if not int_best_time <= self.elapsed_time and not self.game_lost:
int_best_time = self.elapsed_time
with open(file_path, "w") as fp:
fp.write(str(int_best_time))
def load_best_time(self):
file_path = os.path.join(get_activity_root(), 'data', 'best-time')
if os.path.exists(file_path):
with open(file_path, "r") as fp:
highscore = fp.readlines()
try:
return int(highscore[0])
except (ValueError, IndexError) as e:
logging.exception(e)
return 0
return 0
def svg_str_to_pixbuf(svg_string):
""" Load pixbuf from SVG string """
pl = GdkPixbuf.PixbufLoader.new_with_type('svg')
pl.write(svg_string.encode())
pl.close()
pixbuf = pl.get_pixbuf()
return pixbuf