Skip to content
Christian Gwerder edited this page Apr 16, 2020 · 61 revisions

API

Core

This part describes the STM32 core functions.

Core version

This was introduced core version greater than 1.5.0. It is based on Semantic Versioning 2.0.0 (https://semver.org/).

This ease core dependencies and defined here.

STM32_CORE_VERSION defines the core version with:

  • STM32_CORE_VERSION_MAJOR: major version [31:24]
  • STM32_CORE_VERSION_MINOR: minor version [23:16]
  • STM32_CORE_VERSION_PATCH: patch version [15:8]
  • STM32_CORE_VERSION_EXTRA: Extra label [7:0] with:
    • 0: official release
    • [1-9]: release candidate
    • F[0-9]: development

Example

#if !defined(STM32_CORE_VERSION) || (STM32_CORE_VERSION  <= 0x01050000)
/* Do something for core version lesser than or equal to 1.5.0 */
#else
/* Do something for core version greater than 1.5.0 */
#endif

Core Callback

CoreCallback functions allows to register a callback function called in the loop of the main() function. If you need to call as often as possible a function to update your system and you want to be sure this function to be called, you can add it to the callback list. Otherwise, your function should be called inside the loop() function of the sketch.

  • void registerCoreCallback(void (*func)(void)): register a callback function
    Params func pointer to the callback function

  • void unregisterCoreCallback(void (*func)(void)): unregister a callback function
    Params func pointer to the callback function

/img/Warning-icon.png By default, the core callback feature is disabled, to enable it CORE_CALLBACK must be defined.

build_opt.h can be used to define it by adding -DCORE_CALLBACK, see build_opt.h wiki.

Wiring

Analog

Frequency

analogWriteFrequency(freq) has been added in core version greater than 1.5.0 to set the frequency used by analogWrite(). Default is PWM_FREQUENCY (1000) in Hertz.

Note frequency is common to all channels of a specified timer, setting the frequency for one channel will impact all others of the same timer.

Example

  // Assuming Ax pins have PWM capabilities and use a different Timer.
  analogWrite(A1, 127); // Start PWM on A1, at 1000 Hz with 50% duty cycle
  analogWriteFrequency(2000); // Set PMW period to 2000 Hz instead of 1000
  analogWrite(A2, 64); // Start PWM on A2, at 2000 Hz with 25% duty cycle
  analogWriteFrequency(500); // Set PMW period to 500 Hz
  analogWrite(A3, 192); // Start PWM on A3, at 500 Hz with 75% duty cycle

ADC internal channels

Available in core version greater than 1.5.0

analogRead() can now be used to read some internal channels with the following definitions:

  • ATEMP: internal temperature sensor
  • AVREF: VrefInt, internal voltage reference
  • AVBAT: Vbat voltage

A minimum ADC sampling time is required when reading internal channels so default is set it to max possible value. It can be defined more precisely by defining:

  • ADC_SAMPLINGTIME_INTERNAL to the desired ADC sample time.

ADC_SAMPLINGTIME and ADC_CLOCK_DIV could also be redefined by the variant or using build_opt.h.

Example

Hereafter an usage example which read then convert to proper Unit the 3 internal channels + A0:

#include "stm32yyxx_ll_adc.h"

/* Values available in datasheet */
#define CALX_TEMP 25
#if defined(STM32F1xx)
#define V25       1430
#define AVG_SLOPE 4300
#define VREFINT   1200
#elif defined(STM32F2xx)
#define V25       760
#define AVG_SLOPE 2500
#define VREFINT   1210
#endif

/* Analog read resolution */
#if ADC_RESOLUTION == 10
#define LL_ADC_RESOLUTION LL_ADC_RESOLUTION_10B
#define ADC_RANGE 1024
#else
#define LL_ADC_RESOLUTION LL_ADC_RESOLUTION_12B
#define ADC_RANGE 4096
#endif
// the setup routine runs once when you press reset:
void setup() {
  // initialize serial communication at 9600 bits per second:
  Serial.begin(9600);
  analogReadResolution(ADC_RESOLUTION);
}

static int32_t readVref()
{
#ifdef __LL_ADC_CALC_VREFANALOG_VOLTAGE
  return (__LL_ADC_CALC_VREFANALOG_VOLTAGE(analogRead(AVREF), LL_ADC_RESOLUTION));
#else
  return (VREFINT * ADC_RANGE / analogRead(AVREF)); // ADC sample to mV
#endif
}

#ifdef ATEMP
static int32_t readTempSensor(int32_t VRef)
{
#ifdef __LL_ADC_CALC_TEMPERATURE
  return (__LL_ADC_CALC_TEMPERATURE(VRef, analogRead(ATEMP), LL_ADC_RESOLUTION));
#elif defined(__LL_ADC_CALC_TEMPERATURE_TYP_PARAMS)
  return (__LL_ADC_CALC_TEMPERATURE_TYP_PARAMS(AVG_SLOPE, V25, CALX_TEMP, VRef, analogRead(ATEMP), LL_ADC_RESOLUTION));
#else
  return 0;
#endif
}
#endif

static int32_t readVoltage(int32_t VRef, uint32_t pin)
{
  return (__LL_ADC_CALC_DATA_TO_VOLTAGE(VRef, analogRead(pin), LL_ADC_RESOLUTION));
}

// the loop routine runs over and over again forever:
void loop() {
  // print out the value you read:
  Serial.print("VRef(mv)= ");
  int32_t VRef = readVref();
  Serial.print(VRef);

#ifdef ATEMP
  Serial.print("\tTemp(°C)= ");
  Serial.print(readTempSensor(VRef));
#endif
#ifdef AVBAT
  Serial.print("\tVbat(mv)= ");
  Serial.print(readVoltage(VRef, AVBAT));
#endif

  Serial.print("\tA0(mv)= ");
  Serial.println(readVoltage(VRef, A0));
  delay(200);
}

HardwareSerial

The STM32 MCU's have several U(S)ART peripherals. By convenience, the U(S)ARTx number is used to define the Serialxinstance:

  • Serial1 for USART1
  • Serial2 for USART2
  • Serial3 for USART3
  • Serial4 for UART4
  • ... For LPUART1 this is SerialLP1

By default, only one Serialx instance is available mapped to the generic Serial name.

To use a second serial port, a HardwareSerial object should be declared in the sketch before the setup() function:

//                      RX    TX
HardwareSerial Serial1(PA10, PA9);

void setup() {
  Serial1.begin(115200); 
}

void loop() {
  Serial1.println("Hello World!");
  delay(1000);
}

Another solution is to add a build_opt.h file alongside your main .ino file with: -DENABLE_HWSERIALx. This will define the Serialx instance using the first USARTx instance found in the PeripheralPins.c of your variant.

/img/Note-icon.png Note that only the latter solution allows to use the serialEventx() callback in the sketch.

For Example, if you define in the build_opt.h: -DENABLE_HWSERIAL3

This will instantiate Serial3 with the first Rx and Tx pins found in the PinMap_UART_RX[] and PinMap_UART_TX[] arrays in the PeripheralPins.c of your variant and the serialEvent3() will be enabled.

To specify which Rx or Tx pins should be used instead of the first one found, you can specified the PIN_SERIALn_RX or PIN_SERIALn_TX where n is the number of the Serial instance.

Example for the Serial3:

  • In the variant.h:
#define PIN_SERIAL3_RX PB11
#define PIN_SERIAL3_TX PB10
  • In the build_opt.h: -DPIN_SERIAL3_RX=PB11 -DPIN_SERIAL3_TX=PB10

New API functions

Change default Serial instance pins

It is also possible to change the default pins used by the Serial instance using above API:

  • void setRx(uint32_t rx)
  • void setTx(uint32_t tx)
  • void setRx(PinName rx)
  • void setTx(PinName tx)

/img/Warning-icon.png Have to be called before begin().

Example:
    Serial.setRx(PG_9); // using pin name PY_n
    Serial.setTx(PG14); // using pin number PYn
    Serial.begin(9600);

Enable half-duplex mode

Available in core version greater than 1.7.0

It is now possible to set a HardwareSerial in half-duplex mode.

The U(S)ART can be configured to follow a single-wire half-duplex protocol where the Tx and Rx lines are internally connected. In this communication mode, only the Tx pin is used for both transmission and reception.

  • Extended HardwareSerial constructors:

    • HardwareSerial(uint32_t _rxtx): U(S)ART Tx pin number (PYn) used for half-duplex
    • HardwareSerial(PinName _rxtx): U(S)ART Tx pin name (PY_n) used for half-duplex
    • if Rx == Tx then assume half-duplex mode:
      • HardwareSerial(uint32_t _rx, uint32_t _tx): U(S)ART Tx pin number (PYn) used for half-duplex
      • HardwareSerial(PinName _rx, PinName tx): U(S)ART Tx pin name (PY_n) used for half-duplex
    • HardwareSerial(void *peripheral, HalfDuplexMode_t halfDuplex = HALF_DUPLEX_DISABLED): if HALF_DUPLEX_ENABLED get the first Tx pin for requested peripheral in the PeripheralPins.c used for half-duplex
  • Add enableHalfDuplexRx() to enable Serial in Rx mode. Doing a read() could be used but will avoid to perform a read. Useful before available() usage

  • void setHalfDuplex(): enable half-duplex mode of an instance when it not instantiate in half-duplex mode. Must be call before begin() in this case.

Example for a Nucleo L496ZG-P:

Serial4 sends byte to Serila3, compare values then Serial3 resend it to Serial4 and compare. Require to connect PA0 and PB10.

All possible constructor are listed.

HardwareSerial Serial3(PA0);
HardwareSerial Serial4(PB10);

//HardwareSerial Serial3(PA_0);
//HardwareSerial Serial4(PB_10);

//HardwareSerial Serial3(UART4, HALF_DUPLEX_ENABLED);
//HardwareSerial Serial4(USART3, HALF_DUPLEX_ENABLED);

//HardwareSerial Serial3(PA0, PA0);
//HardwareSerial Serial4(PB10, PB10);

//HardwareSerial Serial3(PA_0, PA_0);
//HardwareSerial Serial4(PB_10, PB_10);

//HardwareSerial Serial3(NC, PA_0);
//HardwareSerial Serial4(NC, PB_10);

//HardwareSerial Serial3(NUM_DIGITAL_PINS, PA0);
//HardwareSerial Serial4(NUM_DIGITAL_PINS, PB10);

static uint32_t nbTestOK = 0;
static uint32_t nbTestKO = 0;
void test_uart(int val)
{
  int recval = -1;
  uint32_t error = 0;

  Serial4.write(val);
  delay(10);
  while (Serial3.available()) {
    recval = Serial3.read();
  }
  /* Enable Serial4 to RX*/
  Serial4.enableHalfDuplexRx();
  if (val == recval) {
    Serial3.write(val);
    delay(10);

    while (Serial4.available()) {
      recval = Serial4.read();
    }
    /* Enable Serial3 to RX*/
    Serial3.enableHalfDuplexRx();
    if (val == recval) {
      nbTestOK++;
      Serial.print("Exchange: 0x");
      Serial.println(recval, HEX);
    } else {
      error = 2;
    }
  }
  else {
    error = 1;
  }
  if (error) {
    Serial.print("Send: 0x");
    Serial.print(val, HEX);
    Serial.print("\tReceived: 0x");
    Serial.print(recval, HEX);
    Serial.print(" --> KO <--");
    Serial.println(error);
    nbTestKO++;
  }
}

void setup() {
  Serial.begin(115200);
  Serial4.begin(9600);
  Serial3.begin(9600);
}

void loop() {

  for (uint32_t i = 0; i <= (0xFF); i++) {
    test_uart(i);
  }

  Serial.println("Serial Half-Duplex test done.\nResults:");
  Serial.print("OK: ");
  Serial.println(nbTestOK);
  Serial.print("KO: ");
  Serial.println(nbTestKO);
  while (1);
}

Note: Serial Rx/TX buffer size can be changed, see custom definitions

HardwareTimer library

https://github.com/stm32duino/wiki/wiki/HardwareTimer-library

Built-In Library

This part describes the STM32 libraries provided with the core.

SPI

STM32 SPI library has been modified with the possibility to manage several CS pins without to stop the SPI interface.
We do not describe here the SPI Arduino API but the functionalities added.

We give to the user 3 possibilities about the management of the CS pin:

  • the CS pin is managed directly by the user code before to transfer the data (like the Arduino SPI library)
  • or the user gives the CS pin number to the library API and the library manages itself the CS pin (see example below)
  • or the user uses a hardware CS pin linked to the SPI peripheral

New API functions

  • SPIClass::SPIClass(uint8_t mosi, uint8_t miso, uint8_t sclk, uint8_t ssel): alternative class constructor
    Params SPI mosi pin
    Params SPI miso pin
    Params SPI sclk pin
    Params (optional) SPI ssel pin. This pin must be an hardware CS pin. If you configure this pin, the chip select will be managed by the SPI peripheral. Do not use API functions with CS pin in parameter.

  • void SPIClass::begin(uint8_t _pin): initialize the SPI interface and add a CS pin
    Params SPI CS pin to be managed by the SPI library

  • void beginTransaction(uint8_t pin, SPISettings settings): allows to configure the SPI with other parameter. These new parameter are saved this an associated CS pin.
    Params SPI CS pin to be managed by the SPI library
    Params SPI settings

  • void endTransaction(uint8_t pin): removes a CS pin and the SPI settings associated
    Params SPI CS pin managed by the SPI library

Note 1 The following functions must be called after initialization of the SPI instance with begin() or beginTransaction().
If you have several device to manage, you can call beginTransaction() several time with different CS pin in parameter.
Then you can call the following functions with different CS pin without call again beginTransaction() (until you call end() or endTransaction()).

Note 2 If the mode is set to SPI_CONTINUE, the CS pin is kept enabled. Be careful in case you use several CS pin.

  • byte transfer(uint8_t pin, uint8_t _data, SPITransferMode _mode = SPI_LAST): write/read one byte
    Params SPI CS pin managed by the SPI library
    Params data to write
    Params (optional) if SPI_LAST mode the CS pin is reset, SPI_CONTINUE mode the CS pin is kept enabled. Return byte received

  • uint16_t transfer16(uint8_t pin, uint16_t _data, SPITransferMode _mode = SPI_LAST): write/read half-word
    Params SPI CS pin managed by the SPI library
    Params 16 bits data to write
    Params (optional) if SPI_LAST mode the CS pin is reset, SPI_CONTINUE mode the CS pin is kept enabled. Return 16 bits data received

  • void transfer(uint8_t pin, void *_buf, size_t _count, SPITransferMode _mode = SPI_LAST): write/read several bytes. Only one buffer used to write and read the data
    Params SPI CS pin managed by the SPI library
    Params pointer to data to write. The data will be replaced by the data read.
    Params count is number of data to write/read. Params (optional) if SPI_LAST mode the CS pin is reset, SPI_CONTINUE mode the CS pin is kept enabled.

  • void transfer(byte _pin, void *_bufout, void *_bufin, size_t _count, SPITransferMode _mode = SPI_LAST): write/read several bytes. One buffer for the output data and one for the input data
    Params SPI CS pin managed by the SPI library
    Params _bufout is pointer to data to write.
    Params _bufin id pointer where to store the data read.
    Params count is number of data to write/read.
    Params (optional) if SPI_LAST mode the CS pin is reset, SPI_CONTINUE mode the CS pin is kept enabled.

Example

This is an example of the use of the CS pin management:

#include <SPI.h>
//            MOSI  MISO  SCLK
SPIClass SPI3(PC12, PC11, PC10);

void setup() {
  SPI3.begin(2); //Enables the SPI3 instance with default settings and attaches the CS pin  
  SPI3.beginTransaction(1, settings); //Attaches another CS pin and configure the SPI3 instance with other settings  
  SPI3.transfer(2, 0x52); //Transfers data to the first device
  SPI3.transfer(1, 0xA4); //Transfers data to the second device. The SPI3 instance is configured with the right settings  
  SPI3.end() //SPI3 instance is disabled
}

Change default SPI instance pins

It is also possible to change the default pins used by the SPI instance using above API:

  • void setMISO(uint32_t miso)
  • void setMOSI(uint32_t mosi)
  • void setSCLK(uint32_t sclk)
  • void setSSEL(uint32_t ssel)
  • void setMISO(PinName miso)
  • void setMOSI(PinName mosi)
  • void setSCLK(PinName sclk)
  • void setSSEL(PinName ssel)
Example:
    SPI.setMISO(PC_4); // using pin name PY_n
    SPI.setMOSI(PC2); // using pin number PYn
    SPI.begin(2);

I2C

By default, only one Wire instance is available and it uses the Arduino pins D14(SDA) and D15(SCL). To use a second I2C port, a TwoWire object should be declared in the sketch before the setup() function:

#include <Wire.h>
//            SDA  SCL
TwoWire Wire2(PB3, PB10);

void setup() {
  Wire2.begin(); 
}

void loop() {
  Wire2.beginTransmission(0x71);
  Wire2.write('v');
  Wire2.endTransmission();
  delay(1000);
}

Refers to I2C Timing to customize I2C speed if needed.

New API functions

Change default Wire instance pins

It is also possible to change the default pins used by the Wire instance using above API:

  • void setSCL(uint32_t scl)
  • void setSDA(uint32_t sda)
  • void setSCL(PinName scl)
  • void setSDA(PinName sda)

/img/Warning-icon.png Have to be called before begin().

Example:
    Wire.setSDA(PC_4); // using pin name PY_n
    Wire.setSCL(PC2); // using pin number PYn
    Wire.begin();

Enable general call mode

Available in core version greater than 1.5.0

Adding true as last parameters of the 3 Wire::begin() methods will enable the general call mode otherwise false per default:

  • void begin(bool generalCall = false)
  • void begin(uint8_t, bool generalCall = false)
  • void begin(int, bool generalCall = false)
Example

Wire.begin(true); or Wire.begin(0x70,true);

I2C buffer management

By default I2C buffers are all aligned on Arduino API: 32 bytes.
Nevertheless it is possible to transfer up to 255 bytes:

  • In master mode: RX and TX buffers will automatically grow when needed, independently one from each other, and independently from other I2C instances.
    Nothing to do from application point of view.
    Warning: a bug in STM32 cube HAL (STM32 core v1.8.0) prevents to transfer exactly 255 bytes.(see #853)

  • In slave mode: RX and TX buffer size can be statically redefined using hal_conf_extra.h or build_opt.h (at compilation time) thanks to switch I2C_TXRX_BUFFER_SIZE (see #853)
    All I2C instances are impacted by change of this compilation switch.

CMSIS DSP

Available in core version greater than 1.7.0

CMSIS DSP software library, is a suite of common signal processing functions for use on Cortex-M processor based devices.

The library is divided into a number of functions each covering a specific category:

  • Basic math functions
  • Fast math functions
  • Complex math functions
  • Filters
  • Matrix functions
  • Transform functions
  • Motor control functions
  • Statistical functions
  • Support functions
  • Interpolation functions.

The library has separate functions for operating on 8-bit integers, 16-bit integers, 32-bit integer and 32-bit floating-point value.

More info: https://arm-software.github.io/CMSIS_5/DSP/html/index.html

To use it, add: #include <CMSIS_DSP.h>

arm_math.h is then automatically include.

EEPROM emulation

EEPROM emulation is based on Arduino API: https://www.arduino.cc/en/Reference/EEPROM
Emulation is made in Flash, with all constraints related to Flash operation:

  • whole sector/page erased and written for each write operation.
    Can be very long depending on sector/page size
  • limited Flash life cycle write operation

In addition to Arduino API, to mitigate Flash constraints, it is possible to use buffered API:
Write operations are made in an intermediate RAM buffer, and only at the end (after writing several parameters for example) the buffer is copied in Flash. Thus only 1 write operation for a whole bunch of data.
Example is available here: https://github.com/stm32duino/STM32Examples/tree/master/examples/NonReg/BufferedEEPROM

void eeprom_buffer_fill(); // This function copies the data from flash into the buffer
void eeprom_buffer_flush(); // This function writes the buffer content into the flash
uint8_t eeprom_buffered_read_byte(const uint32_t pos); // Function reads a byte from the eeprom buffer
void eeprom_buffered_write_byte(uint32_t pos, uint8_t value); // Function writes a byte to the eeprom buffer

By default, EEPROM emulation storage correspond to the last sector/page of Flash,
and its size correspond to the size of the last sector/page.
Nevertheless it is possible to customize address and size used for EEPROM.
In this case, following switches should be defined (in variant.h or build_opt.h)

  • FLASH_BASE_ADDRESS
  • FLASH_DATA_SECTOR or FLASH_PAGE_NUMBER (depending on STM32 family used)

see example of variant implementation: https://github.com/stm32duino/Arduino_Core_STM32/pull/938

/img/Warning-icon.png Single/dual bank configuration:

Default last sector used correspond to default board configuration.

For example, NUCLEO_F767ZI is by default configured in single bank. Last sector correspond to this bank configuration.
If this configuration is changed, it is then mandatory to customize FLASH_BASE_ADDRESS/FLASH_DATA_SECTOR, even to use last sector of Flash.

Servo library

https://github.com/stm32duino/wiki/wiki/Servo-library

Other

Remembering variables across resets

Since core version 1.9.0 (see PR #996), it is possible to mark variables as "noinit", which prevents them from being initialized to a fixed value at startup. This allows using these variables to remember a value across resets (since the reset itself leaves memory unchanged, it is only the startup code that normally resets all variable values, but that is prevented by noinit).

To do this, the variable must be placed in the .noinit section by adding __attribute__((__section__(".noinit"))) (this is exactly the same as how this works on the original Arduino AVR core). Typically, you would also need to check the startup reason register so you can initialize the variable with a default on the first startup. For example, something like:

unsigned boot_count __attribute__((__section__(".noinit")));

void setup() {
    Serial.begin(115200);
    while (!Serial); // Wait for serial port open

    // Initialize the variable only on first power-on reset
    if (__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST))
        boot_count = 1;
    __HAL_RCC_CLEAR_RESET_FLAGS();
    
    Serial.print("Boot number: ");
    Serial.println(boot_count);
    ++boot_count;
}

void loop() { }

This shows the number of boots since the last POR by incrementing a noinit variable across resets. Note that when you first upload this, it might not start at 1 but at some arbitrary value, because typically the first boot after an upload is not a power-on-reset. To start at 1, disconnect and reconnect power.

Clone this wiki locally