About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the sum of double-precision floating-point strided array elements, ignoring
NaN
values and using ordinary recursive summation.
npm install @stdlib/blas-ext-base-dnannsumors
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dnannsumors = require( '@stdlib/blas-ext-base-dnannsumors' );
Computes the sum of double-precision floating-point strided array elements, ignoring NaN
values and using ordinary recursive summation.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );
var v = dnannsumors( x.length, x, 1, out, 1 );
// returns <Float64Array>[ 1.0, 3 ]
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: stride length for
x
. - out: output
Float64Array
whose first element is the sum and whose second element is the number of non-NaN elements. - strideOut: stride length for
out
.
The N
and stride parameters determine which elements are accessed at runtime. For example, to compute the sum of every other element in x
,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var out = new Float64Array( 2 );
var v = dnannsumors( 4, x, 2, out, 1 );
// returns <Float64Array>[ 5.0, 2 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var out0 = new Float64Array( 4 );
var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
var v = dnannsumors( 4, x1, 2, out1, 1 );
// returns <Float64Array>[ 5.0, 4 ]
Computes the sum of double-precision floating-point strided array elements, ignoring NaN
values and using ordinary recursive summation and alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );
var v = dnannsumors.ndarray( x.length, x, 1, 0, out, 1, 0 );
// returns <Float64Array>[ 1.0, 3 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetOut: starting index for
out
.
While typed array
views mandate a view offset based on the underlying buffer, offset parameters support indexing semantics based on starting indices. For example, to calculate the sum of every other element starting from the second element:
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var out = new Float64Array( 4 );
var v = dnannsumors.ndarray( 4, x, 2, 1, out, 2, 1 );
// returns <Float64Array>[ 0.0, 5.0, 0.0, 4 ]
- If
N <= 0
, both functions return a sum equal to0.0
. - Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var Float64Array = require( '@stdlib/array-float64' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var dnannsumors = require( '@stdlib/blas-ext-base-dnannsumors' );
function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return discreteUniform( 0, 100 );
}
return NaN;
}
var x = filledarrayBy( 10, 'float64', rand );
console.log( x );
var out = new Float64Array( 2 );
dnannsumors( x.length, x, 1, out, 1 );
console.log( out );
#include "stdlib/blas/ext/base/dnannsumors.h"
Computes the sum of double-precision floating-point strided array elements, ignoring NaN
values and using ordinary recursive summation.
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };
CBLAS_INT n = 0;
double v = stdlib_strided_dnannsumors( 4, x, 1, &n );
// returns 7.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - n:
[out] CBLAS_INT*
pointer for storing the number of non-NaN elements.
double stdlib_strided_dnannsumors( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, CBLAS_INT *n );
Computes the sum of double-precision floating-point strided array elements, ignoring NaN
values and using ordinary recursive summation and alternative indexing semantics.
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };
CBLAS_INT n = 0;
double v = stdlib_strided_dnannsumors_ndarray( 4, x, 1, 0, &n );
// returns 7.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - n:
[out] CBLAS_INT*
pointer for storing the number of non-NaN elements.
double stdlib_strided_dnannsumors_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, CBLAS_INT *n );
#include "stdlib/blas/ext/base/dnannsumors.h"
#include "stdlib/blase/base/shared.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 0.0/0.0, 0.0/0.0 };
// Specify the number of elements:
const int N = 5;
// Specify the stride length:
const int strideX = 2;
// Initialize a variable for storing the number of non-NaN elements:
CBLAS_INT n = 0;
// Compute the sum:
double v = stdlib_strided_dnannsumors( N, x, strideX, &n );
// Print the result:
printf( "sum: %lf\n", v );
printf( "n: %"CBLAS_IFMT"\n", n );
}
@stdlib/blas-ext/base/dnannsum
: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values.@stdlib/blas-ext/base/dnannsumkbn
: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using an improved Kahan–Babuška algorithm.@stdlib/blas-ext/base/dnannsumkbn2
: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using a second-order iterative Kahan–Babuška algorithm.@stdlib/blas-ext/base/dnannsumpw
: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using pairwise summation.@stdlib/blas-ext/base/dsumors
: calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.