-
Notifications
You must be signed in to change notification settings - Fork 6
/
heatmaps.py
306 lines (263 loc) · 9.2 KB
/
heatmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import argparse
import matplotlib as mpl
import numpy as np
import os
import pandas as pd
import sys
import yaml
from matplotlib import gridspec as GS
from matplotlib import pyplot as plt
from scipy import io as sio
from warnings import filterwarnings
try:
from configs import defaults
from configs.subjects import generate_subject_list_for_range
except ModuleNotFoundError:
from .configs import defaults
from .configs.subjects import generate_subject_list_for_range
filterwarnings(
"ignore",
"Warning: converting a masked element to nan"
)
def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
textcolors=["black", "white"],
threshold=None, **textkw):
"""
A function to annotate a heatmap.
Parameters
----------
im
The AxesImage to be labeled.
data
Data used to annotate. If None, the image's data is used. Optional.
valfmt
The format of the annotations inside the heatmap. This should either
use the string format method, e.g. "$ {x:.2f}", or be a
`matplotlib.ticker.Formatter`. Optional.
textcolors
A list or array of two color specifications. The first is used for
values below a threshold, the second for those above. Optional.
threshold
Value in data units according to which the colors from textcolors are
applied. If None (the default) uses the middle of the colormap as
separation. Optional.
**kwargs
All other arguments are forwarded to each call to `text` used to create
the text labels.
"""
import matplotlib
if not isinstance(data, (list, np.ndarray)):
data = im.get_array()
# Normalize the threshold to the images color range.
if threshold is not None:
threshold = im.norm(threshold)
else:
threshold = im.norm(data.max())/2.
# Set default alignment to center, but allow it to be
# overwritten by textkw.
kw = dict(horizontalalignment="center",
verticalalignment="center")
kw.update(textkw)
# Get the formatter in case a string is supplied
if isinstance(valfmt, str):
valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)
# Loop over the data and create a `Text` for each "pixel".
# Change the text's color depending on the data.
texts = []
for i in range(data.shape[0]):
for j in range(data.shape[1]):
kw.update(color=textcolors[int(im.norm(data[i, j]) < threshold)])
text = im.axes.text(j, i, valfmt(data[i, j], None), fontsize=15, **kw)
texts.append(text)
return texts
def generate_heatmap(corrs, var_list, sub_list, save_path=None, title=None):
"""
Function to generate a heatmap.
Parameters
----------
corrs: numpy ndarray with shape (number of features, number of subject_sessions)
This matrix contains the values to plot
var_list: list of strings
The labels, in order, of the features (rows)
sub_list: list of strings
The labels, in order, of the subject_sessions (columns)
save_path: string or falsy
The path to save the file to, or a falsy value to display in IPython
title: str
String to use as plot title. Optional.
Returns
-------
None
"""
fig, ax = plt.subplots(figsize = (50, 15))
im, cbar = heatmap(
corrs, var_list, sub_list, ax=ax, vmin=0, vmax=1,
cbarlabel="correlation score"
)
texts = annotate_heatmap(im)
if title:
plt.title(
label=title,
fontdict={
'fontsize': max(24, len(sub_list)*0.75),
'fontweight' : 'bold',
}
)
fig.tight_layout()
if save_path:
plt.savefig(save_path, bbox_inches="tight")
else:
try:
from IPython.display import display
plt.show()
except:
print("No save path or display configured")
def heatmap(data, row_labels, col_labels, ax=None,
cbar_kw={}, cbarlabel="", **kwargs):
"""
Create a heatmap from a numpy array and two lists of labels.
Parameters
----------
data
A 2D numpy array of shape (N, M).
row_labels
A list or array of length N with the labels for the rows.
col_labels
A list or array of length M with the labels for the columns.
ax
A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If
not provided, use current axes or create a new one. Optional.
cbar_kw
A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.
cbarlabel
The label for the colorbar. Optional.
**kwargs
All other arguments are forwarded to `imshow`.
"""
if not ax:
ax = plt.gca()
# Plot the heatmap
im = ax.imshow(data, **kwargs)
# Create colorbar
cbar = ax.figure.colorbar(
im, ax=ax, values=None, boundaries=None, fraction=0.03, pad=0.03
)
cbar.ax.set_ylabel(cbarlabel, fontsize=20, rotation=-90, va="bottom")
# We want to show all ticks...
ax.set_xticks(np.arange(data.shape[1]))
ax.set_yticks(np.arange(data.shape[0]))
# ... and label them with the respective list entries.
ax.set_xticklabels(col_labels)
ax.set_yticklabels(row_labels)
# Let the horizontal axes labeling appear on top.
ax.tick_params(top=True, bottom=False,
labeltop=True, labelbottom=False)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), fontsize=20, rotation=-30, ha="right",
rotation_mode="anchor")
plt.setp(ax.get_yticklabels(), fontsize=20, ha="right",
rotation_mode="anchor")
# Turn spines off and create white grid.
for edge, spine in list(ax.spines.items()):
spine.set_visible(False)
ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
ax.tick_params(which="minor", bottom=False, left=False)
return im, cbar
def reshape_corrs(correlation_matrix):
"""
Function to reshape a given correlation matrix file to the shape expected by matplotlib.
Parameter
---------
correlation_matrix: str or np.ndarray
path to matrix file or matrix
Returns
-------
matrix: np.ndarray
numpy n-dimensional array in the shape of the heatmap
[features, subject_sessions]
"""
return(
abs(np.transpose(
sio.loadmat(
correlation_matrix_path
)['corrs'] if isinstance(
correlation_matrix, str
) else correlation_matrix
))
)
def parse_args(args):
parser = argparse.ArgumentParser(
description="generate heatmaps"
)
parser.add_argument(
'config',
help='path to a YAML configuration file specifying the data, '
'features and participants to plot'
)
parser.add_argument(
'-o', '--output',
dest='save_path',
help='path to save heatmap to',
required=False
)
parsed = vars(parser.parse_args(args[1:] if len(args)>1 else args))
return(parsed.pop('config'), parsed)
def main(config_path, save_path=None):
with open(config_path, 'r') as config_file:
config_settings = yaml.safe_load(config_file)
generate_heatmap(
reshape_corrs(
config_settings['correlation_matrix']
) if 'correlation_matrix' in config_settings else
defaults.correlation_matrix,
var_list=config_settings[
'var_list'
] if 'var_list' in config_settings else (
config_settings.get(
'regressor_list', []
) + config_settings.get(
'motion_list',
[]
)
) if any([
l in config_settings for l in [
'regressor_list',
'motion_list'
]
]) else (
defaults.regressor_list + defaults.motion_list
),
sub_list=generate_subject_list_for_range(
(
config_settings['subjects']['start'],
config_settings['subjects']['stop']
) if all([
'subjects' in config_settings,
'start' in config_settings['subjects'],
'stop' in config_settings['subjects']
]) else config_settings[
'subjects'
] if 'subjects' in config_settings else (
defaults.subjects['start'],
defaults.subjects['stop']
), (
config_settings['sessions']['start'],
config_settings['sessions']['stop']
) if all([
'sessions' in config_settings,
'start' in config_settings['sessions'],
'stop' in config_settings['sessions']
]) else config_settings[
'sessions'
] if 'sessions' in config_settings else (
defaults.sessions['start'],
defaults.sessions['stop']
)
),
save_path=save_path
)
if __name__ == "__main__":
parsed = parse_args(sys.argv)
main(parsed[0], **parsed[1])