Skip to content

Latest commit

 

History

History
546 lines (479 loc) · 19.4 KB

efk.md

File metadata and controls

546 lines (479 loc) · 19.4 KB
authors reviewers
lyzhang1999
rootsongjc
GuangmingLuo
malphi

EFK

EFK 指的是由 Elasticsearch + Fluentd + Kibana 组成的日志采集、存储、展示为一体的日志解决方案,简称 "EFK Stack", 是目前 Kubernetes 生态日志收集比较推荐的方案。

Elasticsearch

Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎。使用 JAVA 开发并基于 Apache License 2.0 开源协议,也是目前最受欢迎的企业级搜索引擎。

Fluentd

在传统的日志实践中,我们需要用各种不同的手段进行日志的收集和处理(例如 shell 脚本)。Fluentd 的出现,使得不同类型、不同来源的日志都可以通过 Fluentd 来进行统一的日志聚合和处理,同时发送到后端进行存储,并实现了较小资源消耗以及高性能。

除此之外,Fluentd 灵活的插件配置,使得我们对日志的收集、处理、过滤和输出提供了极大的便利。

Kibana

在实践中,我们一般使用 Kibana 对 Elasticsearch 存储的数据进行图形化的界面展示。

官网的定义更加准确:

Kibana 是一款开源的数据分析和可视化平台,它是 Elastic Stack 成员之一,设计用于和 Elasticsearch 协作。您可以使用 Kibana 对 Elasticsearch 索引中的数据进行搜索、查看、交互操作。您可以很方便的利用图表、表格及地图对数据进行多元化的分析和呈现。

采集原理

Dokcer 默认的日志驱动是 json-file,该驱动将来自容器的 stdoutstderr 日志都统一以 json 的形式存储到 Node 节点的 /var/lib/docker/containers/<container-id>/<container-id>-json.log 目录结构内。

而 Kubernetes kubelet 会将 /var/lib/docker/containers/ 目录内的日志文件重新软链接至 /var/log/containers 目录和 /var/log/pods 目录下。这种统一的日志存储规则,为我们收集容器的日志提供了基础和便利。

也就是说,我们只需采集集群节点的 /var/log/containers 目录的日志,就相当于采集了该节点所有容器输出 stdout 的日志。

Kubernetes 日志收集原理

采集方案

从 Istio 1.5 开始,旧版本的 Mixer 已被废弃,对应的功能已迁移至 Envoy。使用原来的 Mixer handler 直接上报遥测数据至 Fluentd 的方案已不再推荐。

所以我们将方案调整为:开启 Envoy 的访问日志输出到 stdout ,以 DaemonSet 的方式在每一台集群节点部署 Fluentd ,并将日志目录挂载至 Fluentd Pod,实现对 Envoy 访问日志的采集。

EFK 日志收集架构

环境准备

在开始之前,请确认已经按照本书正确安装了 Istio。 部署 sleep 示例应用程序用来发送 curl 请求测试。如果启用了 sidecar 自动注入(为命名空间配置了 label:istio-injection=enabled),进入 istio 安装目录,运行命令部署示例应用:

$ kubectl apply -f samples/sleep/sleep.yaml

如果没有开启 sidecar 自动注入,请执行命令手动注入 sidecar

$ kubectl apply -f <(istioctl kube-inject -f samples/sleep/sleep.yaml)

部署 httpbin 示例提供 HTTP Server:

$ kubectl apply -f samples/httpbin/httpbin.yaml

同理,如果没有开启 sidecar 自动注入,执行命令手动注入 sidecar:

$ kubectl apply -f <(istioctl kube-inject -f samples/httpbin/httpbin.yaml)

开启 Envoy 的访问日志

使用 istioctl 修改配置,打开 Envoy 的访问日志,执行命令:

$ istioctl manifest apply --set profile=demo --set values.global.proxy.accessLogFile="/dev/stdout"

- Applying manifest for component Base...
✔ Finished applying manifest for component Base.
- Applying manifest for component Pilot...
✔ Finished applying manifest for component Pilot.
- Applying manifest for component IngressGateways...
- Applying manifest for component EgressGateways...
- Applying manifest for component AddonComponents...
✔ Finished applying manifest for component EgressGateways.
✔ Finished applying manifest for component IngressGateways.
✔ Finished applying manifest for component AddonComponents.

✔ Installation complete

请注意,将 profile 修改为你安装 Istio 时候使用的配置名称(本书为 "demo")

命令完成后,就开启了 Envoy 的访问日志,并输出至 stdout

你可以通过 istioctl manifest apply --set 方法修改以下三个参数:

  • values.global.proxy.accessLogFile
  • values.global.proxy.accessLogEncoding
  • values.global.proxy.accessLogFormat

更加详细的信息可以在 /istio 安装目录/install/kubernetes/istio-demo.yaml 查看:

# Set accessLogFile to empty string to disable access log.
accessLogFile: "/dev/stdout"

# If accessLogEncoding is TEXT, value will be used directly as the log format
# example: "[%START_TIME%] %REQ(:METHOD)% %REQ(X-ENVOY-ORIGINAL-PATH?:PATH)% %PROTOCOL%\n"
# If AccessLogEncoding is JSON, value will be parsed as map[string]string
# example: '{"start_time": "%START_TIME%", "req_method": "%REQ(:METHOD)%"}'
# Leave empty to use default log format
accessLogFormat: ""

# Set accessLogEncoding to JSON or TEXT to configure sidecar access log
accessLogEncoding: 'TEXT'

请注意,accessLogFormat 并未配置,Envoy 将以 Istio 定制的默认日志格式输出:

EnvoyTextLogFormat13 = "[%START_TIME%] \"%REQ(:METHOD)% %REQ(X-ENVOY-ORIGINAL-PATH?:PATH)% " +
		"%PROTOCOL%\" %RESPONSE_CODE% %RESPONSE_FLAGS% \"%DYNAMIC_METADATA(istio.mixer:status)%\" " +
		"\"%UPSTREAM_TRANSPORT_FAILURE_REASON%\" %BYTES_RECEIVED% %BYTES_SENT% " +
		"%DURATION% %RESP(X-ENVOY-UPSTREAM-SERVICE-TIME)% \"%REQ(X-FORWARDED-FOR)%\" " +
		"\"%REQ(USER-AGENT)%\" \"%REQ(X-REQUEST-ID)%\" \"%REQ(:AUTHORITY)%\" \"%UPSTREAM_HOST%\" " +
		"%UPSTREAM_CLUSTER% %UPSTREAM_LOCAL_ADDRESS% %DOWNSTREAM_LOCAL_ADDRESS% " +
		"%DOWNSTREAM_REMOTE_ADDRESS% %REQUESTED_SERVER_NAME% %ROUTE_NAME%\n"

如果你需要自定义输出日志格式,可以前往 Envoy 官网查看相关文档,此内容不在本章节讨论范围内。

测试 Envoy 访问日志

开启 Envoy 日志开关后,开始测试 Envoy 是否正常打印了访问日志。

执行命令,进入 sleep 容器使用 curlhttpbin 发送请求:

$ kubectl exec -it $(kubectl get pod -l app=sleep -o jsonpath='{.items[0].metadata.name}') -ic sleep -- curl -v httpbin:8000/status/418

* Trying 172.16.255.114:8000...
* Connected to httpbin (172.16.255.114) port 8000 (#0)
> GET /status/418 HTTP/1.1
> Host: httpbin:8000
> User-Agent: curl/7.69.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 418 Unknown
< server: envoy
< date: Thu, 11 Jun 2020 07:23:11 GMT
< x-more-info: http://tools.ietf.org/html/rfc2324
< access-control-allow-origin: *
< access-control-allow-credentials: true
< content-length: 135
< x-envoy-upstream-service-time: 8
<

    -=[ teapot ]=-

       _...._
     .'  _ _ `.
    | ."` ^ `". _,
    \_;`"---"`|//
      |       ;/
      \_     _/
        `"""`
* Connection #0 to host httpbin left intact

查看 sleep 的访问日志:

$ kubectl logs -l app=sleep -c istio-proxy

[2020-06-11T07:23:11.948Z] "GET /status/418 HTTP/1.1" 418 - "-" "-" 0 135 22 8 "-" "curl/7.69.1" "05192384-ebf5-9067-9cc1-3d1faa5464b5" "httpbin:8000" "172.16.0.25:80" outbound|8000||httpbin.default.svc.cluster.local 172.16.0.24:50126 172.16.255.114:8000 172.16.0.24:35316 - default

查看 httpbin 的访问日志:

$ kubectl logs -l app=httpbin -c istio-proxy

[2020-06-11T07:23:11.954Z] "GET /status/418 HTTP/1.1" 418 - "-" "-" 0 135 2 2 "-" "curl/7.69.1" "05192384-ebf5-9067-9cc1-3d1faa5464b5" "httpbin:8000" "127.0.0.1:80" inbound|8000|http|httpbin.default.svc.cluster.local 127.0.0.1:39668 172.16.0.25:80 172.16.0.24:50126 outbound_.8000_._.httpbin.default.svc.cluster.local default

至此,Envoy 已经打印出我们所需要的访问日志。

请注意,这里查询的容器名 istio-proxy 其实就是 Envoy sidecar 代理,Envoy 将请求和响应日志都进行了打印并输出至 stdout ,所以可以通过 kubectl logs 查询。

需要留意的是,当 Pod 被销毁后,旧的日志将不复存在,并且无法通过 kubectl logs 查看。

接下来,将部署 EFK ,解决日志的收集、存储以及展示。

部署 EFK

有了以上的基础,我们开始部署 EFK Stack

部署 Elasticsearch

首先,创建一个新的 namespace 用于部署 EFK

# Logging Namespace. All below are a part of this namespace.
apiVersion: v1
kind: Namespace
metadata:
  name: logging

接下来,部署 Elasticsearch 服务。

  1. 部署 Elasticsearch Service:
# Elasticsearch Service
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch
  namespace: logging
  labels:
    app: elasticsearch
spec:
  ports:
  - port: 9200
    protocol: TCP
    targetPort: db
  selector:
    app: elasticsearch
  1. 部署 Elasticsearch Deployment:
# Elasticsearch Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: elasticsearch
  namespace: logging
  labels:
    app: elasticsearch
spec:
  replicas: 1
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
      annotations:
        sidecar.istio.io/inject: "false"
    spec:
      containers:
      - image: docker.elastic.co/elasticsearch/elasticsearch-oss:6.1.1
        name: elasticsearch
        resources:
          # need more cpu upon initialization, therefore burstable class
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: discovery.type
            value: single-node
        ports:
        - containerPort: 9200
          name: db
          protocol: TCP
        - containerPort: 9300
          name: transport
          protocol: TCP
        volumeMounts:
        - name: elasticsearch
          mountPath: /data
      volumes:
      - name: elasticsearch
        emptyDir: {}
  • sidecar.istio.io/inject=false 标识此服务无需 sidecar 注入

请注意,本次实践使用 Deployment 类型创建 Elasticsearch 服务,并且创建了 emptyDir 类型的数据卷,当 Pod 从 Node 移除时,emptyDir 内的数据将会被删除。

在生产实践中,你可以使用 StatefulSet 的部署方式,并使用 volumeClaimTemplates 来为 Pod 提供持久化存储。

部署 Fluentd

  1. 部署 Fluentd Service:
# Fluentd Service
apiVersion: v1
kind: Service
metadata:
  name: fluentd-es
  namespace: logging
  labels:
    app: fluentd-es
spec:
  ports:
  - name: fluentd-tcp
    port: 24224
    protocol: TCP
    targetPort: 24224
  - name: fluentd-udp
    port: 24224
    protocol: UDP
    targetPort: 24224
  selector:
    app: fluentd-es
  1. 生成 Fluentd ConfigMap:
# Fluentd ConfigMap, contains config files.
kind: ConfigMap
apiVersion: v1
data:
  forward.input.conf: |-
    # Takes the messages sent over TCP
    <source>
      @id fluentd-containers.log
      @type tail
      path /var/log/containers/*.log
      pos_file /var/log/es-containers.log.pos
      time_format %Y-%m-%dT%H:%M:%S.%NZ
      tag raw.kubernetes.*
      format json
      read_from_head false
    </source>
    <filter **>
      @id filter_concat
      @type concat
      key message
      multiline_end_regexp /\n$/
      separator ""
    </filter>
    <filter **>
      @type parser
      format json # apache2, nginx, etc...
      key_name log
      reserve_data false
    </filter>
  output.conf: |-
    <match **>
      type elasticsearch
      log_level info
      include_tag_key true
      host elasticsearch
      port 9200
      logstash_format true
      # Set the chunk limits.
      buffer_chunk_limit 2M
      buffer_queue_limit 8
      flush_interval 5s
      # Never wait longer than 5 minutes between retries.
      max_retry_wait 30
      # Disable the limit on the number of retries (retry forever).
      disable_retry_limit
      # Use multiple threads for processing.
      num_threads 2
    </match>
metadata:
  name: fluentd-es-config
  namespace: logging

forward.input.conf:

  • id:日志的唯一标识。
  • type:tail 代表从上次的读取位置不断 tail 读取数据。
  • path:采集日志的位置,这里采集了该目录下所有的日志,如果只需要采集 Envoy 的日志,可以将 path 修改为 /var/log/containers/*istio-proxy*.log
  • pos_file:检查点记录文件,用于恢复日志收集。
  • filter:对 Log 内容重新进行处理,以便将日志内容以 key 和 value 的形式发送到 elasticsearch。
  • concat:这里使用 concat 插件对多行日志进行处理。
  • reserve_data:发送日志时,仅保留处理后的日志,不保留原日志信息。

output.conf:

  • match:** 代表发送所有的日志到 Elasticsearch。
  • type:插件标识,这里配置成 elasticsearch。
  • host/port:配置部署的 elasticsearch 服务的地址和端口。
  • logstash_format:是否以 logstash 格式转发日志数据。
  • buffer:当日志数据发送到目标方失败的时进行缓存,同时也有助于降低磁盘 IO。
  1. 使用 DaemonSet 方式创建 Fluentd 服务:
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd-es
  namespace: logging
  labels:
    app: fluentd-es
spec:
  selector:
    matchLabels:
      app: fluentd-es
  template:
    metadata:
      labels:
        app: fluentd-es
      annotations:
        sidecar.istio.io/inject: "false"
    spec:
      containers:
      - name: fluentd-es
        image: quay.io/fluentd_elasticsearch/fluentd:v3.0.2
        env:
        - name: FLUENTD_ARGS
          value: --no-supervisor -q
        resources:
          limits:
            memory: 500Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
        - name: config-volume
          mountPath: /etc/fluent/config.d
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
      - name: config-volume
        configMap:
          name: fluentd-es-config
  • 这里声明了两个 hostPath 类型的数据卷,路径为日志存储的路径。
  • 将宿主机的 /var/log/var/lib/docker/containers 挂载到了 Fluentd Pod 内便于 Fluentd 收集日志。
  • 同时将之前配置的 ConfigMap fluentd-es-config 作为配置文件挂载到 Pod 的 /etc/fluent/config.d 目录,此目录下将生成两个文件:forward.input.confoutput.conf 用作 Fluentd 的配置。

部署 Kibana

  1. 创建 Kibana Service:
# Kibana Service
apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: logging
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
    protocol: TCP
    targetPort: ui
  selector:
    app: kibana
  1. 部署 Kibana Deployment
# Kibana Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: logging
  labels:
    app: kibana
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
      annotations:
        sidecar.istio.io/inject: "false"
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana-oss:6.1.1
        resources:
          # need more cpu upon initialization, therefore burstable class
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch:9200
        ports:
        - containerPort: 5601
          name: ui
          protocol: TCP
  • 这里将环境变量 ELASTICSEARCH_URL 设置为之前部署的 Elasticsearch Service 和端口 elasticsearch:9200

为了方便,你可以将以上代码合并在一个文件内,不同的资源之间使用 --- 分隔,合并后文件命名为:logging-stack.yaml,执行命令创建所有资源:

$ kubectl apply -f logging-stack.yaml

namespace "logging" created
service "elasticsearch" created
deployment "elasticsearch" created
service "fluentd-es" created
daemonset.apps/fluentd-es created
configmap "fluentd-es-config" created
service "kibana" created
deployment "kibana" created

查看日志

现在,已经成功部署了 EFK ,接下来进行验证。

  1. 执行命令产生访问日志:
$ kubectl exec -it $(kubectl get pod -l app=sleep -o jsonpath='{.items[0].metadata.name}') -c sleep -- curl -v httpbin:8000/status/418

如果你已经按照本书部署了 Bookinfo 示例,你也可以直接通过浏览器访问 /productpage 页面也可以产生访问日志。

  1. 设置 Kibana 的端口转发:
$ kubectl -n logging port-forward $(kubectl -n logging get pod -l app=kibana -o jsonpath='{.items[0].metadata.name}') 5601:5601 &
  • 此命令将 Kibaba Pod 的 5601 端口转发到 localhost:5601& 代表后台运行。
  1. 使用浏览器打开:http://localhost:5601/,在首页 index pattern 输入框输入 logstash-*,点击 "Next step" 创建 Kibana Index

  2. 现在,Kibana 已经能够查询到刚才的访问日志了。 Kibana 日志展示

生产建议

由于篇幅原因,本文对 Fluentd 并没有做非常细致的配置。如果用于生产环境,读者可以前往 Kubernetes 官方 github 仓库找到完整的 EFK 配置来进行部署:

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch

清理

结束了本章的体验之后,你可以执行以下命令进行清理:

  1. 删除 sleephttpbin
$ kubectl delete -f samples/sleep/sleep.yaml
$ kubectl delete -f samples/httpbin/httpbin.yaml
  1. 删除 EFK
kubectl delete -f logging-stack.yaml
  1. 确认应用已经停止并删除
kubectl get pods | grep sleep   # there should be no result
kubectl get pods | grep httpbin   # there should be no result
kubectl get pods -n logging   # there should be no result
kubectl get svc -n logging   # there should be no result
kubectl get ds -n logging   # there should be no result

参考