-
Notifications
You must be signed in to change notification settings - Fork 240
/
polysomy.c
751 lines (695 loc) · 32.9 KB
/
polysomy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/* The MIT License
Copyright (c) 2013-2021 Genome Research Ltd.
Author: Petr Danecek <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multifit_nlin.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/hts_defs.h>
#include "bcftools.h"
#include "peakfit.h"
typedef struct
{
int nvals; // all values, including RR,AA peaks
double *xvals; // pointer to args_t.xvals
double *yvals;
int copy_number; // heuristics to skip futile CN1 fits when no het peak is detected
int irr, ira, iaa; // chop off RR and AA peaks
char *chr;
}
dist_t;
typedef struct
{
int ndist, nbins, ra_rr_scaling, smooth;
double *xvals;
dist_t *dist;
char **argv, *output_dir;
double fit_th, peak_symmetry, cn_penalty, min_peak_size, min_fraction;
int argc, plot, verbose, regions_is_file, targets_is_file, include_aa, force_cn;
int regions_overlap, targets_overlap;
char *dat_fname, *fname, *regions_list, *targets_list, *sample;
FILE *dat_fp;
}
args_t;
FILE *open_file(char **fname, const char *mode, const char *fmt, ...) HTS_FORMAT(HTS_PRINTF_FMT, 3, 4);
static void init_dist(args_t *args, dist_t *dist, int verbose)
{
// isolate RR and AA peaks and rescale so that they are comparable to hets
int i, irr, iaa, n = dist->nvals;
// smooth the distribution, this is just to find the peaks
double *tmp = (double*) malloc(sizeof(double)*n);
int win = args->smooth ? abs(args->smooth)*2 + 1 : 7; // must be an odd number
int hwin = win/2;
double avg = tmp[0] = dist->yvals[0];
for (i=1; i<hwin; i++)
{
avg += dist->yvals[2*i-1];
tmp[i] = avg/(2*i+1);
}
avg = 0;
for (i=0; i<n; i++)
{
avg += dist->yvals[i];
if ( i>=win-1 )
{
tmp[i-hwin] = avg/win;
avg -= dist->yvals[i-win+1];
}
}
for (i=n-hwin; i<n; i++)
{
avg -= dist->yvals[i-hwin];
hwin--;
tmp[i] = avg/(2*hwin+1);
avg -= dist->yvals[i-hwin];
}
// find the extremes; first a simple approach: find a gap
for (irr=0,i=0; i<n/2; i++) if ( tmp[i] < tmp[irr] ) irr = i;
for (iaa=n-1,i=n-1; i>=n/2; i--) if ( tmp[i] < tmp[iaa] ) iaa = i;
irr += win*0.5;
iaa += win*0.5;
if ( iaa>=n ) iaa = n-1;
if ( irr>=iaa ) error("FIXME: oops, dist normalization failed for %s: %d vs %d\n", dist->chr,irr,iaa); // we may need to be smarter
if ( args->smooth>0 ) for (i=0; i<n; i++) dist->yvals[i] = tmp[i];
free(tmp);
// clean the data: the AA peak is occasionally not centered at 1.0 but is closer to the center, chop off
int imax_aa = iaa;
for (i=iaa; i<n; i++)
if ( dist->yvals[imax_aa] < dist->yvals[i] ) imax_aa = i;
dist->nvals = imax_aa+1;
if ( iaa>=dist->nvals ) iaa = dist->nvals-1;
// find the maximum and scale the peaks (first draft: no attempt to join the segments smootly)
double max_rr = 0, max_aa = 0, max_ra = 0, srr = 0, saa = 0, sra = 0;
for (i=0; i<irr; i++)
{
srr += dist->yvals[i];
if ( max_rr < dist->yvals[i] ) max_rr = dist->yvals[i];
}
for (i=irr; i<=iaa; i++)
{
sra += dist->yvals[i];
if ( max_ra < dist->yvals[i] ) max_ra = dist->yvals[i];
}
for (i=iaa+1; i<n; i++)
{
saa += dist->yvals[i];
if ( max_aa < dist->yvals[i] ) max_aa = dist->yvals[i];
}
// Does the het peak exist at all? Usually the numbers are as follows:
// 1: cn=0 ra/rr=0.205730 aa/ra=0.674922 nra=7066
// 20: cn=0 ra/rr=0.258019 aa/ra=0.548929 nra=2381
// X: cn=0 ra/rr=0.005976 aa/ra=44.116667 nra=60
// Y: cn=0 ra/rr=0.008316 aa/ra=7.250000 nra=12
// MT: cn=0 ra/rr=0.013699 aa/ra=0.666667 nra=3
if ( !args->ra_rr_scaling ) max_ra = max_aa = max_rr;
if ( !sra || (sra/srr<0.1 && saa/sra>1.0) ) // too few hets, CN1
{
max_ra = max_aa;
dist->copy_number = 1;
}
else if ( sra/srr<0.1 || saa/sra>1.0 )
{
max_ra = max_aa;
dist->copy_number = -1; // unknown copy number
}
if ( max_rr ) for (i=0; i<irr; i++) dist->yvals[i] /= max_rr;
if ( max_ra ) for (i=irr; i<=iaa; i++) dist->yvals[i] /= max_ra;
if ( max_aa ) for (i=iaa+1; i<n; i++) dist->yvals[i] /= max_aa;
dist->irr = irr;
dist->iaa = iaa;
dist->ira = n*0.5;
if ( verbose )
fprintf(stderr,"%s:\t irr,ira,iaa=%.2f,%.2f,%.2f \t cn=%2d \t ra/rr=%f \t aa/ra=%f \t nra=%d\n",
dist->chr, dist->xvals[irr],dist->xvals[dist->ira],dist->xvals[iaa],
dist->copy_number,sra/srr,saa/sra, (int)sra);
}
static void init_data(args_t *args)
{
bcf_srs_t *files = bcf_sr_init();
if ( args->regions_list )
{
bcf_sr_set_opt(files,BCF_SR_REGIONS_OVERLAP,args->regions_overlap);
if ( bcf_sr_set_regions(files, args->regions_list, args->regions_is_file)<0 )
error("Failed to read the regions: %s\n", args->regions_list);
}
if ( args->targets_list )
{
bcf_sr_set_opt(files,BCF_SR_TARGETS_OVERLAP,args->targets_overlap);
if ( bcf_sr_set_targets(files, args->targets_list, args->targets_is_file, 0)<0 )
error("Failed to read the targets: %s\n", args->targets_list);
}
if ( !bcf_sr_add_reader(files, args->fname) ) error("Failed to read from %s: %s\n", !strcmp("-",args->fname)?"standard input":args->fname,bcf_sr_strerror(files->errnum));
bcf_hdr_t *hdr = files->readers[0].header;
if ( !args->sample )
{
if ( bcf_hdr_nsamples(hdr)>1 ) error("Missing the option -s, --sample\n");
args->sample = hdr->samples[0];
}
else if ( bcf_hdr_id2int(hdr,BCF_DT_SAMPLE,args->sample)<0 ) error("No such sample: %s\n", args->sample);
int ret = bcf_hdr_set_samples(hdr, args->sample, 0);
if ( ret<0 ) error("Error setting the sample: %s\n", args->sample);
if ( !bcf_hdr_idinfo_exists(hdr,BCF_HL_FMT,bcf_hdr_id2int(hdr,BCF_DT_ID,"BAF")) )
error("The tag FORMAT/BAF is not present in the VCF: %s\n", args->fname);
int i;
args->xvals = (double*) calloc(args->nbins,sizeof(double));
for (i=0; i<args->nbins; i++) args->xvals[i] = 1.0*i/(args->nbins-1);
// collect BAF distributions for all chromosomes
int idist = -1, nbaf = 0, prev_chr = -1;
float *baf = NULL;
while ( bcf_sr_next_line(files) )
{
bcf1_t *line = bcf_sr_get_line(files,0);
if ( bcf_get_format_float(hdr,line,"BAF",&baf,&nbaf) != 1 ) continue;
if ( bcf_float_is_missing(baf[0]) ) continue;
if ( prev_chr==-1 || prev_chr!=line->rid )
{
// new chromosome
idist = args->ndist++;
args->dist = (dist_t*) realloc(args->dist, sizeof(dist_t)*args->ndist);
memset(&args->dist[idist],0,sizeof(dist_t));
args->dist[idist].chr = strdup(bcf_seqname(hdr,line));
args->dist[idist].yvals = (double*) calloc(args->nbins,sizeof(double));
args->dist[idist].xvals = args->xvals;
args->dist[idist].nvals = args->nbins;
prev_chr = line->rid;
}
int bin = baf[0]*(args->nbins-1);
args->dist[idist].yvals[bin]++; // the distribution
}
free(baf);
bcf_sr_destroy(files);
for (idist=0; idist<args->ndist; idist++)
{
#if 0
int j;
for (j=0; j<args->nbins; j++)
{
double x = args->dist[idist].xvals[j];
args->dist[idist].yvals[j] = exp(-(x-0.5)*(x-0.5)/1e-3);
}
#endif
init_dist(args, &args->dist[idist],args->verbose);
}
args->dat_fp = open_file(&args->dat_fname,"w","%s/dist.dat", args->output_dir);
fprintf(args->dat_fp, "# This file was produced by: bcftools polysomy(%s+htslib-%s), the command line was:\n", bcftools_version(),hts_version());
fprintf(args->dat_fp, "# \t bcftools %s ", args->argv[0]);
for (i=1; i<args->argc; i++)
fprintf(args->dat_fp, " %s",args->argv[i]);
fprintf(args->dat_fp,"\n#\n");
fprintf(args->dat_fp,"# DIST\t[2]Chrom\t[3]BAF\t[4]Normalized Count\n");
fprintf(args->dat_fp,"# FIT\t[2]Goodness of Fit\t[3]iFrom\t[4]iTo\t[5]The Fitted Function\n");
fprintf(args->dat_fp,"# CN\t[2]Chrom\t[3]Estimated Copy Number\t[4]Absolute fit deviation\n");
char *fname = NULL;
FILE *fp = open_file(&fname,"w","%s/dist.py", args->output_dir);
//-------- matplotlib script --------------
fprintf(fp,
"#!/usr/bin/env python\n"
"#\n"
"import matplotlib as mpl\n"
"mpl.use('Agg')\n"
"import matplotlib.pyplot as plt\n"
"import csv,sys,argparse\n"
"from math import exp\n"
"\n"
"outdir = '%s'\n"
"\n"
"def read_dat(dat,fit,cn):\n"
" csv.register_dialect('tab', delimiter='\t', quoting=csv.QUOTE_NONE)\n"
" with open(outdir+'/dist.dat', 'r') as f:\n"
" reader = csv.reader(f, 'tab')\n"
" for row in reader:\n"
" if row[0][0]=='#': continue\n"
" type = row[0]\n"
" chr = row[1]\n"
" if type=='DIST':\n"
" if chr not in dat: dat[chr] = []\n"
" dat[chr].append(row)\n"
" elif type=='FIT':\n"
" if chr not in fit: fit[chr] = []\n"
" fit[chr].append(row)\n"
" elif type=='CN':\n"
" cn[chr] = row[2]\n"
"\n"
"def plot_dist(dat,fit,chr):\n"
" fig, ax = plt.subplots(1, 1, figsize=(7,5))\n"
" ax.plot([x[2] for x in dat[chr]],[x[3] for x in dat[chr]],'k-',label='Distribution')\n"
" if chr in fit:\n"
" for i in range(len(fit[chr])):\n"
" pfit = fit[chr][i]\n"
" exec('def xfit(x): return '+pfit[5])\n"
" istart = int(pfit[3])\n"
" iend = int(pfit[4])+1\n"
" vals = dat[chr][istart:iend]\n"
" args = {}\n"
" if i==0: args = {'label':'Target to Fit'}\n"
" ax.plot([x[2] for x in vals],[x[3] for x in vals],'r-',**args)\n"
" if i==0: args = {'label':'Best Fit'}\n"
" ax.plot([x[2] for x in vals],[xfit(float(x[2])) for x in vals],'g-',**args)\n"
" ax.set_title('BAF distribution, chr'+chr)\n"
" ax.set_xlabel('BAF')\n"
" ax.set_ylabel('Frequency')\n"
" ax.legend(loc='best',prop={'size':7},frameon=False)\n"
" plt.savefig(outdir+'/dist.chr'+chr+'.png')\n"
" plt.close()\n"
"\n"
"def plot_copy_number(cn):\n"
" fig, ax = plt.subplots(1, 1, figsize=(7,5))\n"
" xlabels = sorted(cn.keys())\n"
" xvals = range(len(xlabels))\n"
" yvals = [float(cn[x]) for x in xlabels]\n"
" ax.plot(xvals,yvals,'o',color='red')\n"
" for i in range(len(xvals)):\n"
" if yvals[i]==-1: ax.annotate('?', xy=(xvals[i],0.5),va='center',ha='center',color='red',fontweight='bold')\n"
" ax.tick_params(axis='both', which='major', labelsize=9)\n"
" ax.set_xticks(xvals)\n"
" ax.set_xticklabels(xlabels,rotation=45)\n"
" ax.set_xlim(-1,len(xlabels))\n"
" ax.set_ylim(0,5.0)\n"
" ax.set_yticks([1.0,2.0,3.0,4.0])\n"
" ax.set_xlabel('Chromosome')\n"
" ax.set_ylabel('Copy Number')\n"
" plt.savefig(outdir+'/copy-number.png')\n"
" plt.close()\n"
"\n"
"class myParser(argparse.ArgumentParser):\n"
" def error(self, message):\n"
" self.print_help()\n"
" sys.stderr.write('error: %%s\\n' %% message)\n"
" sys.exit(2)\n"
"\n"
"def main():\n"
" parser = myParser()\n"
" parser.add_argument('-a', '--all', action='store_true', help='Create all plots')\n"
" parser.add_argument('-c', '--copy-number', action='store_true', help='Create copy-number plot')\n"
" parser.add_argument('-d', '--distrib', metavar='CHR', help='Plot BAF distribution of a single chromosome')\n"
" args = parser.parse_args()\n"
" dat = {}; fit = {}; cn = {}\n"
" read_dat(dat,fit,cn)\n"
" if args.distrib!=None:\n"
" plot_dist(dat,fit,args.distrib)\n"
" if args.all:\n"
" for chr in dat: plot_dist(dat,fit,chr)\n"
" plot_copy_number(cn)\n"
" elif args.copy_number:\n"
" plot_copy_number(cn)\n"
" else:\n"
" for chr in dat: plot_dist(dat,fit,chr)\n"
"\n"
"if __name__ == '__main__':\n"
" main()\n",
args->output_dir);
//---------------------------------------
chmod(fname, S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH|S_IXUSR|S_IXGRP|S_IXOTH);
if ( fclose(fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,fname);
free(fname);
}
static void destroy_data(args_t *args)
{
int i;
for (i=0; i<args->ndist; i++)
{
free(args->dist[i].chr);
free(args->dist[i].yvals);
}
free(args->dist);
free(args->xvals);
if ( fclose(args->dat_fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,args->dat_fname);
free(args->dat_fname);
}
static void save_dist(args_t *args, dist_t *dist)
{
int i;
for (i=0; i<args->nbins; i++)
fprintf(args->dat_fp,"DIST\t%s\t%f\t%f\n",dist->chr,dist->xvals[i],dist->yvals[i]);
}
static void fit_curves(args_t *args)
{
peakfit_t *pkf = peakfit_init();
peakfit_verbose(pkf,args->verbose);
int i, nmc = 50;
for (i=0; i<args->ndist; i++)
{
dist_t *dist = &args->dist[i];
save_dist(args, &args->dist[i]);
if ( dist->copy_number!=0 )
{
fprintf(args->dat_fp,"CN\t%s\t%.2f\n", dist->chr,(float)dist->copy_number);
continue;
}
if ( args->verbose )
fprintf(stderr,"%s:\n", dist->chr);
int nrr_aa = dist->iaa - dist->irr + 1;
int nrr_ra = dist->ira - dist->irr + 1;
int naa_max = dist->nvals - dist->iaa;
double xrr = dist->xvals[dist->irr], *xrr_vals = &dist->xvals[dist->irr], *yrr_vals = &dist->yvals[dist->irr];
double xaa = dist->xvals[dist->iaa], *xaa_vals = &dist->xvals[dist->iaa], *yaa_vals = &dist->yvals[dist->iaa];
double xra = dist->xvals[dist->ira];
double xmax = dist->xvals[dist->nvals-1];
// CN2
double cn2aa_fit = 0, cn2ra_fit, cn2_fit;
char *cn2aa_func = 0, *cn2ra_func;
double cn2aa_params[3] = {1,1,1} ,cn2ra_params[3];
if ( args->include_aa )
{
peakfit_reset(pkf);
peakfit_add_exp(pkf, 1.0,1.0,0.2, 5);
peakfit_set_mc(pkf, 0.01,0.3,2,nmc);
peakfit_set_mc(pkf, 0.05,1.0,0,nmc);
cn2aa_fit = peakfit_run(pkf, naa_max, xaa_vals, yaa_vals);
cn2aa_func = strdup(peakfit_sprint_func(pkf));
peakfit_get_params(pkf,0,cn2aa_params,3);
}
peakfit_reset(pkf);
peakfit_add_bounded_gaussian(pkf, 1.0,0.5,0.03, 0.45,0.55, 7);
peakfit_set_mc(pkf, 0.01,0.3,2,nmc);
peakfit_set_mc(pkf, 0.05,1.0,0,nmc);
cn2ra_fit = peakfit_run(pkf, nrr_aa,xrr_vals,yrr_vals);
cn2ra_func = strdup(peakfit_sprint_func(pkf));
cn2_fit = cn2ra_fit + cn2aa_fit;
peakfit_get_params(pkf,0,cn2ra_params,3);
// CN3: fit two peaks, then enforce the symmetry and fit again
double cn3rra_params[5], cn3raa_params[5], *cn3aa_params = cn2aa_params;
double cn3aa_fit = cn2aa_fit, cn3ra_fit;
char *cn3aa_func = cn2aa_func, *cn3ra_func;
double min_dx3 = 0.5 - 1./(args->min_fraction+2);
peakfit_reset(pkf);
peakfit_add_bounded_gaussian(pkf, 1.0,1/3.,0.03, xrr,xra-min_dx3, 7);
peakfit_set_mc(pkf, xrr,xra-min_dx3, 1,nmc);
peakfit_add_bounded_gaussian(pkf, 1.0,2/3.,0.03, xra+min_dx3,xaa, 7);
peakfit_set_mc(pkf, xra+min_dx3,xaa, 1,nmc);
peakfit_run(pkf, nrr_aa, xrr_vals, yrr_vals);
// force symmetry around x=0.5
peakfit_get_params(pkf,0,cn3rra_params,5);
peakfit_get_params(pkf,1,cn3raa_params,5);
double cn3_dx = (0.5-cn3rra_params[1] + cn3raa_params[1]-0.5)*0.5;
if ( cn3_dx > 0.5/3 ) cn3_dx = 0.5/3; // CN3 peaks should not be separated by more than 1/3
peakfit_reset(pkf);
peakfit_add_gaussian(pkf, cn3rra_params[0],0.5-cn3_dx,cn3rra_params[2], 5);
peakfit_add_gaussian(pkf, cn3raa_params[0],0.5+cn3_dx,cn3raa_params[2], 5);
cn3ra_fit = peakfit_run(pkf, nrr_aa, xrr_vals, yrr_vals);
cn3ra_func = strdup(peakfit_sprint_func(pkf));
// compare peak sizes
peakfit_get_params(pkf,0,cn3rra_params,3);
peakfit_get_params(pkf,1,cn3raa_params,3);
double cn3rra_size = cn3rra_params[0]*cn3rra_params[0];
double cn3raa_size = cn3raa_params[0]*cn3raa_params[0];
double cn3_dy = cn3rra_size > cn3raa_size ? cn3raa_size/cn3rra_size : cn3rra_size/cn3raa_size;
double cn3_frac = (1 - 2*cn3rra_params[1]) / cn3rra_params[1];
double cn3_fit = cn3ra_fit + cn3aa_fit;
// A very reasonable heuristics: check if the peak's width converged, exclude far too broad or far too narrow peaks
if ( cn3rra_params[2]>0.3 || cn3raa_params[2]>0.3 ) cn3_fit = HUGE_VAL;
if ( cn3rra_params[2]<1e-2 || cn3raa_params[2]<1e-2 ) cn3_fit = HUGE_VAL;
// CN4 (contaminations)
// - first fit only the [0,0.5] part of the data, then enforce the symmetry and fit again
// - min_frac=1 (resp. 0.5) is interpreted as 50:50% (rep. 75:25%) contamination
double cn4AAaa_params[3] = {1,1,1} ,cn4AAra_params[3] = {1,1,1}, cn4RAra_params[3], cn4RArr_params[5], cn4RAaa_params[5];
double cn4aa_fit = 0, cn4ra_fit;
char *cn4aa_func = 0, *cn4ra_func;
double min_dx4 = 0.25*args->min_fraction;
if ( args->include_aa )
{
peakfit_reset(pkf);
peakfit_add_exp(pkf, 0.5,1.0,0.2, 5);
peakfit_set_mc(pkf, 0.01,0.3,2,nmc);
peakfit_add_bounded_gaussian(pkf, 0.4,(xaa+xmax)*0.5,2e-2, xaa,xmax, 7);
peakfit_set_mc(pkf, xaa,xmax, 1,nmc);
cn4aa_fit = peakfit_run(pkf, naa_max, xaa_vals,yaa_vals);
cn4aa_func = strdup(peakfit_sprint_func(pkf));
peakfit_get_params(pkf,0,cn4AAaa_params,3);
peakfit_get_params(pkf,1,cn4AAra_params,5);
}
peakfit_reset(pkf);
// first fit only the [0,0.5] part of the data
peakfit_add_gaussian(pkf, 1.0,0.5,0.03, 5);
peakfit_add_bounded_gaussian(pkf, 0.6,0.3,0.03, xrr,xra-min_dx4, 7);
peakfit_set_mc(pkf, xrr,xra-min_dx4,2,nmc);
peakfit_run(pkf, nrr_ra , xrr_vals, yrr_vals);
// now forcet symmetry around x=0.5
peakfit_get_params(pkf,0,cn4RAra_params,3);
peakfit_get_params(pkf,1,cn4RArr_params,5);
double cn4_dx = 0.5-cn4RArr_params[1];
if ( cn4_dx > 0.25 ) cn4_dx = 0.25; // CN4 peaks should not be separated by more than 0.5
peakfit_reset(pkf);
peakfit_add_gaussian(pkf, cn4RAra_params[0],0.5,cn4RAra_params[2], 5);
peakfit_add_gaussian(pkf, cn4RArr_params[0],0.5-cn4_dx,cn4RArr_params[2], 5);
peakfit_add_gaussian(pkf, cn4RArr_params[0],0.5+cn4_dx,cn4RArr_params[2], 5);
peakfit_set_mc(pkf, 0.1,cn4RAra_params[0],0,nmc);
peakfit_set_mc(pkf, 0.01,0.1,2,nmc);
cn4ra_fit = peakfit_run(pkf, nrr_aa , xrr_vals, yrr_vals);
cn4ra_func = strdup(peakfit_sprint_func(pkf));
peakfit_get_params(pkf,0,cn4RAra_params,3);
peakfit_get_params(pkf,1,cn4RArr_params,3);
peakfit_get_params(pkf,2,cn4RAaa_params,3);
double cn4RAra_size = cn4RAra_params[0]==0 ? HUGE_VAL : cn4RAra_params[0]*cn4RAra_params[0];
double cn4RArr_size = cn4RArr_params[0]*cn4RArr_params[0];
double cn4RAaa_size = cn4RAaa_params[0]*cn4RAaa_params[0];
double cn4RArr_dy = cn4RArr_size < cn4RAra_size ? cn4RArr_size/cn4RAra_size : cn4RAra_size/cn4RArr_size;
double cn4RAaa_dy = cn4RAaa_size < cn4RAra_size ? cn4RAaa_size/cn4RAra_size : cn4RAra_size/cn4RAaa_size;
double cn4_dy = cn4RArr_dy < cn4RAaa_dy ? cn4RArr_dy/cn4RAaa_dy : cn4RAaa_dy/cn4RArr_dy;
double cn4_ymin = cn4RArr_size < cn4RAaa_size ? cn4RArr_size/cn4RAra_size : cn4RAaa_size/cn4RAra_size;
cn4_dx = (cn4RAaa_params[1]-0.5) - (0.5-cn4RArr_params[1]);
double cn4_frac = cn4RAaa_params[1] - cn4RArr_params[1];
double cn4_fit = cn4ra_fit + cn4aa_fit;
// A very reasonable heuristics: check if the peak's width converged, exclude far too broad or far too narrow peaks
if ( cn4RAra_params[2]>0.3 || cn4RArr_params[2]>0.3 || cn4RAaa_params[2]>0.3 ) cn4_fit = HUGE_VAL;
if ( cn4RAra_params[2]<1e-2 || cn4RArr_params[2]<1e-2 || cn4RAaa_params[2]<1e-2 ) cn4_fit = HUGE_VAL;
// Choose the best match
char cn2_fail = '*', cn3_fail = '*', cn4_fail = '*';
if ( cn2_fit > args->fit_th ) cn2_fail = 'f';
if ( cn3_fit > args->fit_th ) cn3_fail = 'f';
else if ( cn3_dy < args->peak_symmetry ) cn3_fail = 'y'; // size difference is too big
if ( cn4_fit > args->fit_th ) cn4_fail = 'f';
else if ( cn4_ymin < args->min_peak_size ) cn4_fail = 'y'; // side peak is too small
else if ( cn4_dy < args->peak_symmetry ) cn4_fail = 'Y'; // size difference is too big
else if ( cn4_dx > 0.1 ) cn4_fail = 'x'; // side peaks placed assymetrically
double cn = -1, fit = cn2_fit;
if ( cn2_fail == '*' ) { cn = 2; fit = cn2_fit; }
if ( cn3_fail == '*' )
{
// Use cn_penalty as a tiebreaker. If set to 0.3, cn3_fit must be 30% smaller than cn2_fit.
if ( cn<0 || cn3_fit < (1-args->cn_penalty) * fit )
{
cn = 2 + cn3_frac;
fit = cn3_fit;
if ( cn2_fail=='*' ) cn2_fail = 'p';
}
else cn3_fail = 'p';
}
if ( cn4_fail == '*' )
{
if ( cn<0 || cn4_fit < (1-args->cn_penalty) * fit )
{
cn = 3 + cn4_frac;
fit = cn4_fit;
if ( cn2_fail=='*' ) cn2_fail = 'p';
if ( cn3_fail=='*' ) cn3_fail = 'p';
}
else cn4_fail = 'p';
}
if ( args->verbose )
{
fprintf(stderr,"\tcn2 %c fit=%e\n", cn2_fail, cn2_fit);
fprintf(stderr,"\t .. %e\n", cn2ra_fit);
fprintf(stderr,"\t RA: %f %f %f\n", cn2ra_params[0],cn2ra_params[1],cn2ra_params[2]);
fprintf(stderr,"\t .. %e\n", cn2aa_fit);
fprintf(stderr,"\t AA: %f %f %f\n", cn2aa_params[0],cn2aa_params[1],cn2aa_params[2]);
fprintf(stderr,"\t func:\n");
fprintf(stderr,"\t %s\n", cn2ra_func);
fprintf(stderr,"\t %s\n", cn2aa_func);
fprintf(stderr,"\n");
fprintf(stderr,"\tcn3 %c fit=%e frac=%f symmetry=%f\n", cn3_fail, cn3_fit, cn3_frac, cn3_dy);
fprintf(stderr,"\t .. %e\n", cn3ra_fit);
fprintf(stderr,"\t RRA: %f %f %f\n", cn3rra_params[0],cn3rra_params[1],cn3rra_params[2]);
fprintf(stderr,"\t RAA: %f %f %f\n", cn3raa_params[0],cn3raa_params[1],cn3raa_params[2]);
fprintf(stderr,"\t .. %e\n", cn3aa_fit);
fprintf(stderr,"\t AAA: %f %f %f\n", cn3aa_params[0],cn3aa_params[1],cn3aa_params[2]);
fprintf(stderr,"\t func:\n");
fprintf(stderr,"\t %s\n", cn3ra_func);
fprintf(stderr,"\t %s\n", cn3aa_func);
fprintf(stderr,"\n");
fprintf(stderr,"\tcn4 %c fit=%e frac=%f symmetry=%f ymin=%f\n", cn4_fail, cn4_fit, cn4_frac, cn4_dy, cn4_ymin);
fprintf(stderr,"\t .. %e\n", cn4ra_fit);
fprintf(stderr,"\t RArr: %f %f %f\n", cn4RArr_params[0],cn4RArr_params[1],cn4RArr_params[2]);
fprintf(stderr,"\t RAra: %f %f %f\n", cn4RAra_params[0],cn4RAra_params[1],cn4RAra_params[2]);
fprintf(stderr,"\t RAaa: %f %f %f\n", cn4RAaa_params[0],cn4RAaa_params[1],cn4RAaa_params[2]);
fprintf(stderr,"\t .. %e\n", cn4aa_fit);
fprintf(stderr,"\t AAaa: %f %f %f\n", cn4AAaa_params[0],cn4AAaa_params[1],cn4AAaa_params[2]);
fprintf(stderr,"\t func:\n");
fprintf(stderr,"\t %s\n", cn4ra_func);
fprintf(stderr,"\t %s\n", cn4aa_func);
fprintf(stderr,"\n");
}
if ( args->force_cn==2 || cn2_fail == '*' )
{
fprintf(args->dat_fp,"FIT\t%s\t%e\t%d\t%d\t%s\n", dist->chr,cn2ra_fit,dist->irr,dist->iaa,cn2ra_func);
if ( cn2aa_func ) fprintf(args->dat_fp,"FIT\t%s\t%e\t%d\t%d\t%s\n", dist->chr,cn2aa_fit,dist->iaa,dist->nvals-1,cn2aa_func);
}
if ( args->force_cn==3 || cn3_fail == '*' )
{
fprintf(args->dat_fp,"FIT\t%s\t%e\t%d\t%d\t%s\n", dist->chr,cn3ra_fit,dist->irr,dist->iaa,cn3ra_func);
if ( cn3aa_func ) fprintf(args->dat_fp,"FIT\t%s\t%e\t%d\t%d\t%s\n", dist->chr,cn3aa_fit,dist->iaa,dist->nvals-1,cn3aa_func);
}
if ( args->force_cn==4 || cn4_fail == '*' )
{
fprintf(args->dat_fp,"FIT\t%s\t%e\t%d\t%d\t%s\n", dist->chr,cn4ra_fit,dist->irr,dist->iaa,cn4ra_func);
if ( cn4aa_func ) fprintf(args->dat_fp,"FIT\t%s\t%e\t%d\t%d\t%s\n", dist->chr,cn4aa_fit,dist->iaa,dist->nvals-1,cn4aa_func);
}
fprintf(args->dat_fp,"CN\t%s\t%.2f\t%f\n", dist->chr, cn, fit);
free(cn2aa_func);
free(cn2ra_func);
free(cn3ra_func);
free(cn4ra_func);
free(cn4aa_func);
}
peakfit_destroy(pkf);
}
static void usage(args_t *args)
{
fprintf(stderr, "\n");
fprintf(stderr, "About: Detect number of chromosomal copies from Illumina's B-allele frequency (BAF)\n");
fprintf(stderr, "Usage: bcftools polysomy [OPTIONS] FILE.vcf\n");
fprintf(stderr, "\n");
fprintf(stderr, "General options:\n");
fprintf(stderr, " -o, --output-dir PATH \n");
fprintf(stderr, " -r, --regions REGION Restrict to comma-separated list of regions\n");
fprintf(stderr, " -R, --regions-file FILE Restrict to regions listed in a file\n");
fprintf(stderr, " --regions-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps (2) [1]\n");
fprintf(stderr, " -s, --sample NAME Sample to analyze\n");
fprintf(stderr, " -t, --targets REGION Similar to -r but streams rather than index-jumps\n");
fprintf(stderr, " -T, --targets-file FILE Similar to -R but streams rather than index-jumps\n");
fprintf(stderr, " --targets-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps (2) [0]\n");
fprintf(stderr, " -v, --verbose \n");
fprintf(stderr, "\n");
fprintf(stderr, "Algorithm options:\n");
fprintf(stderr, " -b, --peak-size FLOAT Minimum peak size (0-1, larger is stricter) [0.1]\n");
fprintf(stderr, " -c, --cn-penalty FLOA> Penalty for increasing CN (0-1, larger is stricter) [0.7]\n");
fprintf(stderr, " -f, --fit-th FLOAT Goodness of fit threshold (>0, smaller is stricter) [3.3]\n");
fprintf(stderr, " -i, --include-aa Include the AA peak in CN2 and CN3 evaluation\n");
fprintf(stderr, " -m, --min-fraction FLOAT Minimum distinguishable fraction of aberrant cells [0.1]\n");
fprintf(stderr, " -p, --peak-symmetry FLOAT Peak symmetry threshold (0-1, larger is stricter) [0.5]\n");
fprintf(stderr, "\n");
exit(1);
}
int main_polysomy(int argc, char *argv[])
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->nbins = 150;
args->fit_th = 3.3;
args->cn_penalty = 0.7;
args->peak_symmetry = 0.5;
args->min_peak_size = 0.1;
args->ra_rr_scaling = 1;
args->min_fraction = 0.1;
args->smooth = -3;
args->regions_overlap = 1;
args->targets_overlap = 0;
static struct option loptions[] =
{
{"ra-rr-scaling",0,0,1}, // hidden option
{"force-cn",1,0,2}, // hidden option
{"smooth",1,0,'S'}, // hidden option
{"nbins",1,0,'n'}, // hidden option
{"include-aa",0,0,'i'},
{"peak-size",1,0,'b'},
{"min-fraction",1,0,'m'},
{"verbose",0,0,'v'},
{"fit-th",1,0,'f'},
{"cn-penalty",1,0,'c'},
{"peak-symmetry",1,0,'p'},
{"output-dir",1,0,'o'},
{"sample",1,0,'s'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{"targets-overlap",required_argument,NULL,4},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"regions-overlap",required_argument,NULL,3},
{0,0,0,0}
};
char *tmp;
int c;
while ((c = getopt_long(argc, argv, "h?o:vt:T:r:R:s:f:p:c:im:b:n:S:",loptions,NULL)) >= 0)
{
switch (c)
{
case 1 : args->ra_rr_scaling = 0; break;
case 2 : args->force_cn = atoi(optarg); break;
case 3 :
args->regions_overlap = parse_overlap_option(optarg);
if ( args->regions_overlap < 0 ) error("Could not parse: --regions-overlap %s\n",optarg);
break;
case 4 :
args->targets_overlap = parse_overlap_option(optarg);
if ( args->targets_overlap < 0 ) error("Could not parse: --targets-overlap %s\n",optarg);
break;
case 'n': args->nbins = atoi(optarg); break;
case 'S': args->smooth = atoi(optarg); break;
case 'i': args->include_aa = 1; break;
case 'b':
args->min_peak_size = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -b %s\n", optarg);
if ( args->min_peak_size<0 || args->min_peak_size>1 ) error("Range error: -b %s\n", optarg);
break;
case 'm':
args->min_fraction = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -n %s\n", optarg);
if ( args->min_fraction<0 || args->min_fraction>1 ) error("Range error: -n %s\n", optarg);
break;
case 'f':
args->fit_th = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -f %s\n", optarg);
break;
case 'p':
args->peak_symmetry = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -p %s\n", optarg);
break;
case 'c':
args->cn_penalty = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -c %s\n", optarg);
break;
case 's': args->sample = optarg; break;
case 't': args->targets_list = optarg; break;
case 'T': args->targets_list = optarg; args->targets_is_file = 1; break;
case 'r': args->regions_list = optarg; break;
case 'R': args->regions_list = optarg; args->regions_is_file = 1; break;
case 'o': args->output_dir = optarg; break;
case 'v': args->verbose++; break;
default: usage(args); break;
}
}
if ( optind>=argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-";
}
else args->fname = argv[optind];
if ( !args->fname ) usage(args);
if ( !args->output_dir ) error("Missing the -o option\n");
init_data(args);
fit_curves(args);
destroy_data(args);
free(args);
return 0;
}