-
Notifications
You must be signed in to change notification settings - Fork 2
/
optimizer.py
67 lines (53 loc) · 2.63 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from typing import Callable, Iterable, Tuple
import math
import torch
from torch.optim import Optimizer
class AdamW(Optimizer):
def __init__(
self,
params: Iterable[torch.nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
super().__init__(params, defaults)
def step(self, closure: Callable = None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['first_moment'] = torch.zeros_like(p.data)
state['second_moment'] = torch.zeros_like(p.data)
#Update step
state['step'] += 1
# Update first and second moments of the gradients
state['first_moment'] = group['betas'][0]*state['first_moment'] + (1-group['betas'][0])*grad
state['second_moment'] = group['betas'][1]*state['second_moment'] + (1-group['betas'][1])*grad**2
bias_correction1 = 1 - group['betas'][0] ** state['step']
bias_correction2 = 1 - group['betas'][1] ** state['step']
# Update parameters
step_size = group['lr'] * (bias_correction2)**0.5 / bias_correction1
update = state["first_moment"] / (torch.sqrt(state["second_moment"]) + group['eps'])
p.data = p.data -step_size * update
# Update again using weight decay
if group['weight_decay'] != 0:
p.data = p.data * (1 - group['lr'] * group['weight_decay'])
return loss