-
Notifications
You must be signed in to change notification settings - Fork 0
/
cofiCostFunc.m
43 lines (35 loc) · 1.05 KB
/
cofiCostFunc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function [J, grad] = cofiCostFunc(params, Y, num_users, num_movies, ...
num_features, lambda)
X = reshape(params(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(params(num_movies*num_features+1:end), ...
num_users, num_features);
J = 0;
X_grad = zeros(size(X));
Theta_grad = zeros(size(Theta));
for i=1:size(Y,1)
for j=1:size(Y,2)
if Y(i,j)~=0
J+=(Theta(j,:)*X(i,:)' - Y(i,j))^2;
end
end
end
J/=2;
J+= (lambda /2) * (sum(sum(Theta.^2)) + sum(sum(X.^2)));
for i=1:size(X,1)
idx = find(Y(i, :)~=0);
Theta_temp = Theta(idx, :);
Y_temp = Y(i, idx);
X_grad (i, :) = (X(i, :) * Theta_temp' - Y_temp ) * Theta_temp;
end
X_grad .+= lambda .* X;
for i=1:size(Theta,1)
idx = find(Y(:, i)~=0);
X_temp = X(idx, :);
Y_temp = Y(idx,i);
temp = (X_temp * Theta(i,:)' - Y_temp ) ;
Theta_grad (i, :) = temp' * X_temp;
end
Theta_grad .+= lambda .* Theta;
% =============================================================
grad = [X_grad(:); Theta_grad(:)];
end