-
Notifications
You must be signed in to change notification settings - Fork 0
/
12_n_body_problem.rb
101 lines (83 loc) · 3.69 KB
/
12_n_body_problem.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def step(poses, vels)
poses.each_with_index { |pi, i|
# pi = 2, p = 5, we want it to increase.
# so we do 5 <=> 2 which is 1.
vels[i] += poses.sum { |p| p <=> pi }
}
vels.each_with_index { |vel, i| poses[i] += vel }
end
def run1k(moons)
pos = moons.dup
vel = moons.map { 0 }
1000.times { step(pos, vel) }
pos.zip(vel)
end
def codegen_vel_update
i = (0...4).to_a
i.combination(2) { |a, b|
# among these options, this one seems to be fastest.
puts "if p#{a} > p#{b}; v#{a} -= 1; v#{b} += 1; elsif p#{b} > p#{a}; v#{a} += 1; v#{b} -= 1; end"
#puts "if p#{a} > p#{b}; v#{a}] -= 1; v#{b} += 1; end"
#puts "if p#{b} > p#{a}; v#{a}] += 1; v#{b} -= 1; end"
#puts "cmp#{a}#{b} = p#{a} <=> p#{b}"
#puts "v#{a} -= cmp#{a}#{b}"
#puts "v#{b} += cmp#{a}#{b}"
}
end
def period(moons)
raise "Can't handle anything other than four moons" if moons.size != 4
p0, p1, p2, p3 = moons
v0 = v1 = v2 = v3 = 0
t = 0
# A lot of code duplication, but this otherwise runs slow (> 1 second).
# I probably just should use a compiled language.
# It's not like I wrote this by hand though, codegen saves the day.
while true
if p0 > p1; v0 -= 1; v1 += 1; elsif p1 > p0; v0 += 1; v1 -= 1; end
if p0 > p2; v0 -= 1; v2 += 1; elsif p2 > p0; v0 += 1; v2 -= 1; end
if p0 > p3; v0 -= 1; v3 += 1; elsif p3 > p0; v0 += 1; v3 -= 1; end
if p1 > p2; v1 -= 1; v2 += 1; elsif p2 > p1; v1 += 1; v2 -= 1; end
if p1 > p3; v1 -= 1; v3 += 1; elsif p3 > p1; v1 += 1; v3 -= 1; end
if p2 > p3; v2 -= 1; v3 += 1; elsif p3 > p2; v2 += 1; v3 -= 1; end
p0 += v0
p1 += v1
p2 += v2
p3 += v3
t += 1
# Given each state, there is only one previous state that could have led to it.
# Because of this, the initial state is guaranteed to be the first repeat state.
# Further, consider any state with velocities all 0:
# t-1: [(p0 , ?), (p1 , ?), (p2, 0), (p3 , ?)]
# t : [(p0 , 0), (p1 , 0), (p2, 0), (p3 , 0)]
# t+1: [(p0+v0, v0), (p1+v1, v1), (p2+v2, v2), (p3+v3, v3)]
#
# We see that positions at t-1 must be equal to positions at t, because velocities ended at 0.
# Since positions are the same, velocity deltas are the same, which means we know more:
#
# t-2: [(p0+v0, ?), (p1+v1, ?), (p2+v2, ?), (p3+v3, ?)]
# t-1: [(p0 , -v0), (p1 , -v1), (p2, -v2), (p3 , -v3)]
# t : [(p0 , 0), (p1 , 0), (p2, 0), (p3 , 0)]
# t+1: [(p0+v0, v0), (p1+v1, v1), (p2+v2, v2), (p3+v3, v3)]
#
# Denoting the delta in velocity at times t+1 and t-2 (which are the same) as a0, a1, a2, a3, then we have:
#
# t-3: [(p0+2*v0+a0, ?), (p1+2*v1+a1, ?), (p2+2*v2+a2, ?), (p3+2*v3+a3, ?)]
# t-2: [(p0+v0, -v0-a0), (p1+v1, -v1-a1), (p2+v2, -v2-a2), (p3+v3, -v3-a3)]
# ...
# t+2: [(p0+2*v0+a0, v0+a0), (p1+2*v1+a1, v1+a1), (p2+2*v2+a2, v2+a2), (p3+2*v3+a3, v3+a3)]
#
# This process continues to repeat.
# So we have this symmetry in velocities on either side of v=0.
# So, if we ever reach a position with velocities 0, we certainly return to the initial state in t*2.
# We could just continue to run the simulation to be sure, but might as well cut runtime in half, right?
return t * 2 if v0 == 0 && v1 == 0 && v2 == 0 && v3 == 0
end
end
verbose = ARGV.delete('-v')
input = ARGF.each_line.map { |l| l.scan(/-?\d+/).map(&method(:Integer)) }
coordinates = input.transpose.map(&:freeze).freeze
moons1k = coordinates.map(&method(:run1k)).transpose
puts moons1k.sum { |moon| moon.transpose.map { |c| c.sum(&:abs) }.reduce(:*) }
periods = coordinates.map(&method(:period))
p periods if verbose
puts periods.reduce(1) { |a, b| a.lcm(b) }