forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_video.py
249 lines (202 loc) · 8.44 KB
/
generate_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import cv2
import numpy as np
from calibrate_camera import get_calibration_data, undistort_image
from moviepy.editor import VideoFileClip
from thresholds import get_color_threshold
from warper import get_dst_pts, get_src_pts, warper
calibration = get_calibration_data()
matrix = calibration['mtx']
distortion_coefficients = calibration['dist']
frames = []
def process_window(
binary_warped,
window,
window_height,
leftx_current,
rightx_current,
margin,
nonzeroy,
nonzerox,
left_lane_inds,
right_lane_inds,
minpix
):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - ((window + 1) * window_height)
win_y_high = binary_warped.shape[0] - (window * window_height)
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) &
(nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) &
(nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) &
(nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) &
(nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
return left_lane_inds, right_lane_inds, leftx_current, rightx_current
def add_text_to_final_image(
image,
labels_with_pos,
color,
font=cv2.FONT_HERSHEY_SIMPLEX,
fontscale=1.25,
thickness=2,
lineType=cv2.LINE_AA,
drop_shadow_offset=3
):
drop_shadow_color = (0, 0, 0)
for label in labels_with_pos:
text = label[0]
pos = label[1]
pos_offset = (pos[0] + drop_shadow_offset, pos[1] + drop_shadow_offset)
# Draw drop shadow
cv2.putText(
img=image,
text=text,
org=pos_offset,
fontFace=font,
fontScale=fontscale,
color=drop_shadow_color,
thickness=thickness,
lineType=lineType
)
# Draw main color
cv2.putText(
img=image,
text=text,
org=pos,
fontFace=font,
fontScale=fontscale,
color=color,
thickness=thickness,
lineType=lineType
)
return image
def pipeline(image):
"""Pipeline to manipulate an image to detect lane lines and illustrate the lane region
:param numpy.ndarray image: Image containing lanes to be detected
:return numpy.ndarray: Image with lane painted with curvature radius and distance-from-center labels
"""
undistorted = undistort_image(image, matrix, distortion_coefficients)
_, combined_binary = get_color_threshold(undistorted)
src = get_src_pts()
dst = get_dst_pts()
binary_warped = warper(combined_binary, src, dst)
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 155
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
left_lane_inds, right_lane_inds, leftx_current, rightx_current = process_window(
binary_warped,
window,
window_height,
leftx_current,
rightx_current,
margin,
nonzeroy,
nonzerox,
left_lane_inds,
right_lane_inds,
minpix
)
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Define y-value where we want radius of curvature
# Let's choose the maximum y-value, corresponding to the bottom of the image
y_eval = np.max(ploty)
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (255, 255, 0))
avg_curve_radius = np.mean([left_curverad + right_curverad])
text_curve_radius = 'Curvature Radius = {:.4f} (m)'.format(avg_curve_radius)
lane_center = (leftx_base + rightx_base) / 2
lane_off_center = (lane_center - (image.shape[1] / 2)) * xm_per_pix
text_center_off = 'Vehicle is {:.4f} m {} of center'.format(abs(lane_off_center), 'left' if lane_off_center > 0 else 'right')
# Draw labels
color = (255, 255, 0)
labels_with_pos = [
(text_curve_radius, (50, 100)),
(text_center_off, (50, 160))
]
undistorted = add_text_to_final_image(
undistorted,
labels_with_pos,
color
)
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = warper(color_warp, dst, src)
# Combine the result with the original image
return cv2.addWeighted(undistorted, 1, newwarp, 0.3, 0)
if __name__ == "__main__":
video_output = 'yellow_brick_road.mp4'
clip1 = VideoFileClip("project_video.mp4")
yellow_clip = clip1.fl_image(pipeline) #NOTE: this function expects color images!!
yellow_clip.write_videofile(video_output, audio=False)
# video_output = 'fix.mp4'
# clip1 = VideoFileClip("project_video.mp4").subclip(39, 40)
# yellow_clip = clip1.fl_image(pipeline) #NOTE: this function expects color images!!
# yellow_clip.write_videofile(video_output, audio=False)