You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Refactor the pandas/core/reshape module to improve code quality by reducing duplication, replacing hard-coded values, and simplifying complex conditionals.
Problem Description
The pandas/core/reshape module implements key reshaping functions (pivot, melt, and unstack) used in data manipulation workflows. A review of pivot.py and melt.py reveals a couple of areas where code quality could be improved:
Nested Conditionals:
In melt.py, nested conditionals add complexity, making the code harder to read and maintain.
Suggestion: Refactor these conditionals into smaller, more modular functions.
Hard-Coded Values:
In pivot.py, hard-coded strings (e.g., "All" for margins) reduce flexibility.
Suggestion: Replace hard-coded values with constants for maintainability.
Relevant File
melt.py
pivot.py
Proposed Solution
Refactor Nested Conditionals in melt.py
Nested Conditional in ensure_list_vars()
Before:
defensure_list_vars(arg_vars, variable: str, columns) ->list:
ifarg_varsisnotNone:
ifnotis_list_like(arg_vars):
return [arg_vars]
elifisinstance(columns, MultiIndex) andnotisinstance(arg_vars, list):
raiseValueError(
f"{variable} must be a list of tuples when columns are a MultiIndex"
)
else:
returnlist(arg_vars)
else:
return []
After:
defensure_list_vars(arg_vars, variable: str, columns) ->list:
ifarg_varsisNone:
return []
ifnotis_list_like(arg_vars):
return [arg_vars]
ifisinstance(columns, MultiIndex) andnotisinstance(arg_vars, list):
raiseValueError(
f"{variable} must be a list of tuples when columns are a MultiIndex"
)
returnlist(arg_vars)
Nested Conditional in melt() for id_vars:
Before:
ifid_varsorvalue_vars:
ifcol_levelisnotNone:
level=frame.columns.get_level_values(col_level)
else:
level=frame.columnslabels=id_vars+value_varsidx=level.get_indexer_for(labels)
missing=idx==-1ifmissing.any():
missing_labels= [
labforlab, not_foundinzip(labels, missing) ifnot_found
]
raiseKeyError(
"The following id_vars or value_vars are not present in "f"the DataFrame: {missing_labels}"
)
ifvalue_vars_was_not_none:
frame=frame.iloc[:, algos.unique(idx)]
else:
frame=frame.copy(deep=False)
else:
frame=frame.copy(deep=False)
After:
defvalidate_and_get_level(frame, id_vars, value_vars, col_level):
level=frame.columns.get_level_values(col_level) ifcol_levelisnotNoneelseframe.columnslabels=id_vars+value_varsidx=level.get_indexer_for(labels)
missing=idx==-1ifmissing.any():
missing_labels= [labforlab, not_foundinzip(labels, missing) ifnot_found]
raiseKeyError(
"The following id_vars or value_vars are not present in "f"the DataFrame: {missing_labels}"
)
returnidxifid_varsorvalue_vars:
idx=validate_and_get_level(frame, id_vars, value_vars, col_level)
ifvalue_vars_was_not_none:
frame=frame.iloc[:, algos.unique(idx)]
else:
frame=frame.copy(deep=False)
Nested Conditionals for Setting var_name in melt():
Before:
ifvar_nameisNone:
ifisinstance(frame.columns, MultiIndex):
iflen(frame.columns.names) ==len(set(frame.columns.names)):
var_name=frame.columns.nameselse:
var_name= [f"variable_{i}"foriinrange(len(frame.columns.names))]
else:
var_name= [
frame.columns.nameifframe.columns.nameisnotNoneelse"variable"
]
elifis_list_like(var_name):
ifisinstance(frame.columns, MultiIndex):
ifis_iterator(var_name):
var_name=list(var_name)
iflen(var_name) >len(frame.columns):
raiseValueError(
f"{var_name=} has {len(var_name)} items, "f"but the dataframe columns only have {len(frame.columns)} levels."
)
else:
raiseValueError(f"{var_name=} must be a scalar.")
else:
var_name= [var_name]
After:
defdetermine_var_name(frame, var_name):
ifvar_nameisNone:
return_default_var_name(frame)
ifis_list_like(var_name):
_validate_list_var_name(var_name, frame)
returnlist(var_name)
return [var_name]
def_default_var_name(frame):
ifisinstance(frame.columns, MultiIndex):
iflen(frame.columns.names) ==len(set(frame.columns.names)):
returnframe.columns.namesreturn [f"variable_{i}"foriinrange(len(frame.columns.names))]
return [frame.columns.nameor"variable"]
def_validate_list_var_name(var_name, frame):
ifisinstance(frame.columns, MultiIndex):
ifis_iterator(var_name):
var_name=list(var_name)
iflen(var_name) >len(frame.columns):
raiseValueError(
f"{var_name=} has {len(var_name)} items, "f"but the dataframe columns only have {len(frame.columns)} levels."
)
else:
raiseValueError(f"{var_name=} must be a scalar.")
var_name=determine_var_name(frame, var_name)
Benefits:
Improves readability:
Simplifies the main function, making the logic clearer and easier to follow.
Makes the logic easier to test and maintain:
Enables independent testing of each helper function, ensuring robust behavior.
Separation of concerns:
Each helper function is now responsible for a single, well-defined task, aligning with the principle of single responsibility.
Replace Hard-Coded Values in pivot.py
Before:
# Hard-coded string for marginsmargins_name: Hashable="All"
After:
# Define a constant for the hard-coded valueMARGIN_NAME="All"# Use the constant in the codemargins_name: Hashable=MARGIN_NAME:
Benefits:
Makes the code more readable and maintainable.
Centralizes the value so it can be reused or modified easily.
Testing
Unit Testing Helper Functions:
Write focused tests for each new helper function to validate their behavior under expected, edge, and erroneous inputs. For example:
Ensure validate_and_get_level() correctly identifies missing variables and raises KeyError.
Test determine_var_name() with var_name=None, scalar inputs, and multi-level columns.
Regression Testing Parent Functions:
Run all pre-existing tests for the parent functions (e.g., melt()) to confirm they maintain their functionality after the refactor.
Edge Cases:
Include additional tests for edge scenarios, such as:
Empty id_vars or value_vars.
DataFrames with unusual column configurations like MultiIndex or missing names.
Labels
ENH
Code Quality
Compliance with Contributing Guide
Focus: The issue is specific and addresses code quality improvements without scope creep.
Clarity: Includes actionable suggestions and a clear implementation path.
Please provide feedback and let me know if you would like further refinements!
The text was updated successfully, but these errors were encountered:
Summary
Refactor the pandas/core/reshape module to improve code quality by reducing duplication, replacing hard-coded values, and simplifying complex conditionals.
Problem Description
The pandas/core/reshape module implements key reshaping functions (pivot, melt, and unstack) used in data manipulation workflows. A review of pivot.py and melt.py reveals a couple of areas where code quality could be improved:
Nested Conditionals:
Hard-Coded Values:
Relevant File
Proposed Solution
Refactor Nested Conditionals in melt.py
ensure_list_vars()
melt()
forid_vars
:var_name
inmelt()
:Simplifies the main function, making the logic clearer and easier to follow.
Enables independent testing of each helper function, ensuring robust behavior.
Each helper function is now responsible for a single, well-defined task, aligning with the principle of single responsibility.
Replace Hard-Coded Values in pivot.py
Testing
Unit Testing Helper Functions:
Write focused tests for each new helper function to validate their behavior under expected, edge, and erroneous inputs. For example:
Regression Testing Parent Functions:
Run all pre-existing tests for the parent functions (e.g., melt()) to confirm they maintain their functionality after the refactor.
Edge Cases:
Include additional tests for edge scenarios, such as:
Labels
ENH
Code Quality
Compliance with Contributing Guide
Please provide feedback and let me know if you would like further refinements!
The text was updated successfully, but these errors were encountered: