You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Handling over 10 million daily API calls with an ultra-low query latency: A real-time analytical solution of KYE based on Flink and OceanBase | OceanBase
#168
Open
liboyang0730 opened this issue
Oct 21, 2024
· 0 comments
Kwai is a short video app boasting more than 10 million daily active users. How does it efficiently process highly concurrent user requests? Kwai once deployed multiple MySQL clusters in the backend to support high traffic with large data storage and satisfactory performance. What are the weak points of this conventional sharding solution? What pushed Kwai to select distributed databases and eventually deploy OceanBase Database? In this post, Xiaochong, the head of Kwai's O&M team, shared the team’s reflection and experience in implementing the OceanBase Database solution.
The text was updated successfully, but these errors were encountered:
https://oceanbase.github.io/docs/blogs/users/Kwai
Kwai is a short video app boasting more than 10 million daily active users. How does it efficiently process highly concurrent user requests? Kwai once deployed multiple MySQL clusters in the backend to support high traffic with large data storage and satisfactory performance. What are the weak points of this conventional sharding solution? What pushed Kwai to select distributed databases and eventually deploy OceanBase Database? In this post, Xiaochong, the head of Kwai's O&M team, shared the team’s reflection and experience in implementing the OceanBase Database solution.
The text was updated successfully, but these errors were encountered: