From c94e58a5ac86c5d65adc41a5ce0ff869ca6dd037 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E9=BE=99=E6=89=93=E9=87=8E?= <18128966990@163.com> Date: Thu, 18 Jul 2024 17:54:17 +0800 Subject: [PATCH] =?UTF-8?q?Update=202024-03-01-=E6=95=B0=E5=AD=A6=E5=AD=A6?= =?UTF-8?q?=E4=B9=A0.md?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...60\345\255\246\345\255\246\344\271\240.md" | 28 +++++++++++++++++++ 1 file changed, 28 insertions(+) diff --git "a/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" "b/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" index 9cbba06..bb63daa 100644 --- "a/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" +++ "b/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" @@ -311,9 +311,37 @@ dx = 1/10, dy = 1/48 dx = 1/480 --- +### 中值定理 + +费马定理 + +f在极值点x0 ∈ (a, b)处可导 => f'(x0) = 0 + +罗尔中值定理 + +f在[a, b]连续,(a, b)可导 + +f(a) = f(b) => $\exist \zeta \in $(a,b), f'($\zeta$) = 0 + +拉格朗日中值定理 + +f在[a, b]连续,(a, b)可导 + +=> $\exist \zeta \in (a, b), s.t. f'(\zeta) = \frac {f(b) - f(a)} {b - a}$ + +科西中值定理 + +f,g在[a, b]连续,(a, b)可导,g'(x) != 0, $\forall x \in (a,b)$ + +=> $\exist \zeta \in (a,b), s.t. \frac {f(b) - f(a)} {g(b) - g(a)} = \frac {f'(\zeta)} {g'(\zeta)}$ + +--- + ### $G(x) = \int g(x)dx $ +积分的唯一性 +if F' = G', F(x) = G(x) + c