diff --git "a/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" "b/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" index 3d3bfc1..bc37112 100644 --- "a/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" +++ "b/_posts/2024-03-01-\346\225\260\345\255\246\345\255\246\344\271\240.md" @@ -203,9 +203,13 @@ ln 答案 = $ln(\lim_{n \to \infty} (1 + \frac{1}{n})^n)$ = 1 --- -$f(x) \approx f(x) + f(x)' f(x - x0)$ +$f(x) \approx f(x_0) + f'(x_0)*(x - x_0)$ -$\frac{\Delta f} {\Delta x} \approx f'(x_0)$ ($\Delta x = x - x_0$) +$\frac{\Delta f} {\Delta x} \approx f'(x_0)$ ($\Delta x = x - x_0$) 当x=x0时,和上面公式一样 +ln 1.1 = ? +x0 在 0 时,ln(1+x) ~= f(0) + f'(0)f(x-x0) ~= ln(1) + 1/1+0 * (x - 0) ~= x + +x0 在 0 时,(1+x)^r ~= 1 + r(1+0)^r-1 * (x - 0) ~= 1 + rx