Skip to content

Latest commit

 

History

History

hrnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

HRNet

Deep High-Resolution Representation Learning for Visual Recognition

Introduction

High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, the proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. It shows the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems.

Figure 1. Architecture of HRNet [1]

Requirements

mindspore ascend driver firmware cann toolkit/kernel
2.3.1 24.1.RC2 7.3.0.1.231 8.0.RC2.beta1

Quick Start

Preparation

Installation

Please refer to the installation instruction in MindCV.

Dataset Preparation

Please download the ImageNet-1K dataset for model training and validation.

Training

  • Distributed Training

It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run

# distributed training on multiple NPU devices
msrun --bind_core=True --worker_num 8 python train.py --config configs/hrnet/hrnet_w32_ascend.yaml --data_dir /path/to/imagenet

For detailed illustration of all hyper-parameters, please refer to config.py.

Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.

  • Standalone Training

If you want to train or finetune the model on a smaller dataset without distributed training, please run:

# standalone training on single NPU device
python train.py --config configs/hrnet/hrnet_w32_ascend.yaml --data_dir /path/to/dataset --distribute False

Validation

To validate the accuracy of the trained model, you can use validate.py and parse the checkpoint path with --ckpt_path.

python validate.py -c configs/hrnet/hrnet_w32_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt

Performance

Our reproduced model performance on ImageNet-1K is reported as follows.

Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode.

model name params(M) cards batch size resolution jit level graph compile ms/step img/s acc@top1 acc@top5 recipe weight
hrnet_w32 41.30 8 128 224x224 O2 1069s 238.03 4301.98 80.66 95.30 yaml weights

Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode.

model name params(M) cards batch size resolution jit level graph compile ms/step img/s acc@top1 acc@top5 recipe weight
hrnet_w32 41.30 128 8 224x224 O2 1312s 279.10 3668.94 80.64 95.44 yaml weights

Notes

  • top-1 and top-5: Accuracy reported on the validation set of ImageNet-1K.

References

[1] Jingdong Wang, Ke Sun, Tianheng Cheng, et al. Deep High-Resolution Representation Learning for Visual Recognition[J]. arXiv preprint arXiv:1908.07919, 2019.