From 2839d055286d5f8d9d742bb9fec21d6382c16789 Mon Sep 17 00:00:00 2001 From: Quentin Vermande Date: Mon, 25 Nov 2024 15:38:18 +0100 Subject: [PATCH] adapt to mc#1256 --- reals/constructive_ereal.v | 2 +- theories/normedtype.v | 4 ++-- theories/showcase/summability.v | 3 ++- 3 files changed, 5 insertions(+), 4 deletions(-) diff --git a/reals/constructive_ereal.v b/reals/constructive_ereal.v index a2155ef0e..f9992483c 100644 --- a/reals/constructive_ereal.v +++ b/reals/constructive_ereal.v @@ -137,7 +137,7 @@ Definition er_map T T' (f : T -> T') (x : \bar T) : \bar T' := Lemma er_map_idfun T (x : \bar T) : er_map idfun x = x. Proof. by case: x. Qed. -Definition fine {R : zmodType} x : R := if x is EFin v then v else 0. +Definition fine {R : zmodType} x : R := if x is EFin v then v else 0%R. Section EqEReal. Variable (R : eqType). diff --git a/theories/normedtype.v b/theories/normedtype.v index bf18d7bcd..ad227e6e1 100644 --- a/theories/normedtype.v +++ b/theories/normedtype.v @@ -244,11 +244,11 @@ Proof. apply/seteqP; split=> [A [e/= e0 reA]|_/= [A [e/= e0 reA <-]]]. exists (-%R @` A). exists e => // x/= rxe xr; exists (- x)%R; rewrite ?opprK//. - by apply: reA; rewrite ?eqr_opp//= opprK addrC distrC. + by apply: reA; rewrite ?(@eqr_opp R)//= opprK addrC distrC. rewrite image_comp (_ : _ \o _ = idfun) ?image_id// funeqE => x/=. by rewrite opprK. exists e => //= x/=; rewrite -opprD normrN => axe xa. -exists (- x)%R; rewrite ?opprK//; apply: reA; rewrite ?eqr_oppLR//=. +exists (- x)%R; rewrite ?opprK//; apply: reA; rewrite ?(@eqr_oppLR R)//=. by rewrite opprK. Qed. diff --git a/theories/showcase/summability.v b/theories/showcase/summability.v index dae60a5b9..0a6c1df55 100644 --- a/theories/showcase/summability.v +++ b/theories/showcase/summability.v @@ -35,8 +35,9 @@ apply: filter_fromT_filter; first by exists fset0. by move=> A B /=; exists (A `|` B) => P /=; rewrite fsubUset => /andP[]. Qed. +Print Visibility. Definition partial_sum {I : choiceType} {R : zmodType} - (x : I -> R) (A : {fset I}) : R := \sum_(i : A) x (val i). + (x : I -> R) (A : {fset I}) : R := (\sum_(i : A) x (val i))%R. Definition sum (I : choiceType) {K : numDomainType} {R : normedModType K} (x : I -> R) : R := lim (partial_sum x @ totally).