-
Notifications
You must be signed in to change notification settings - Fork 18
/
PeakDetection.cpp
142 lines (123 loc) · 3.86 KB
/
PeakDetection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
MIT License
Copyright (c) 2019 Leandro César
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// Acknowledgment: https://stackoverflow.com/questions/22583391/peak-peaknal-detection-in-realtime-timeseries-data
#include "PeakDetection.h"
using namespace std;
const int DEFAULT_LAG = 32;
const int DEFAULT_THRESHOLD = 2;
const double DEFAULT_INFLUENCE = 0.5;
const double DEFAULT_EPSILON = 0.01;
PeakDetection::PeakDetection() {
index = 0;
lag = DEFAULT_LAG;
threshold = DEFAULT_THRESHOLD;
influence = DEFAULT_INFLUENCE;
EPSILON = DEFAULT_EPSILON;
peak = 0;
}
PeakDetection::~PeakDetection() {
delete data;
delete avg;
delete std;
}
void PeakDetection::begin() {
data = (double *)malloc(sizeof(double) * (lag + 1));
avg = (double *)malloc(sizeof(double) * (lag + 1));
std = (double *)malloc(sizeof(double) * (lag + 1));
for (int i = 0; i < lag; ++i) {
data[i] = 0.0;
avg[i] = 0.0;
std[i] = 0.0;
}
}
void PeakDetection::begin(int lag, int threshold, double influence) {
this->lag = lag;
this->threshold = threshold;
this->influence = influence;
data = (double *)malloc(sizeof(double) * (lag + 1));
avg = (double *)malloc(sizeof(double) * (lag + 1));
std = (double *)malloc(sizeof(double) * (lag + 1));
for (int i = 0; i < lag; ++i) {
data[i] = 0.0;
avg[i] = 0.0;
std[i] = 0.0;
}
}
void PeakDetection::setEpsilon(double epsilon) {
this->EPSILON = epsilon;
}
double PeakDetection::getEpsilon() {
return(EPSILON);
}
//void PeakDetection::add(double newSample) {
double PeakDetection::add(double newSample) {
peak = 0;
int i = index % lag; //current index
int j = (index + 1) % lag; //next index
double deviation = newSample - avg[i];
if (deviation > threshold * std[i]) {
data[j] = influence * newSample + (1.0 - influence) * data[i];
peak = 1;
}
else if (deviation < -threshold * std[i]) {
data[j] = influence * newSample + (1.0 - influence) * data[i];
peak = -1;
}
else
data[j] = newSample;
avg[j] = getAvg(j, lag);
std[j] = getStd(j, lag);
index++;
if (index >= 16383) //2^14
index = lag + j;
return(std[j]);
}
double PeakDetection::getFilt() {
int i = index % lag;
return avg[i];
}
int PeakDetection::getPeak() {
return peak;
}
double PeakDetection::getAvg(int start, int len) {
double x = 0.0;
for (int i = 0; i < len; ++i)
x += data[(start + i) % lag];
return x / len;
}
double PeakDetection::getPoint(int start, int len) {
double xi = 0.0;
for (int i = 0; i < len; ++i)
xi += data[(start + i) % lag] * data[(start + i) % lag];
return xi / len;
}
double PeakDetection::getStd(int start, int len) {
double x1 = getAvg(start, len);
double x2 = getPoint(start, len);
double powx1 = x1 * x1;
double std = x2 - powx1;
if (std > -EPSILON && std < EPSILON)
if(std < 0.0)
return(-EPSILON);
else
return(EPSILON);
else
return sqrt(x2 - powx1);
}