diff --git a/libs/langchain-google-genai/src/tests/chat_models-extended.int.test.ts b/libs/langchain-google-genai/src/tests/chat_models-extended.int.test.ts new file mode 100644 index 000000000000..935346531999 --- /dev/null +++ b/libs/langchain-google-genai/src/tests/chat_models-extended.int.test.ts @@ -0,0 +1,141 @@ +/* eslint-disable no-process-env */ +import { test, expect } from "@jest/globals"; +import { z } from "zod"; +import { ChatGoogleGenerativeAI } from "../chat_models.js"; + +const baseSchema = z.object({ + name: z.string(), + age: z.number(), +}); + +test("Google AI - Generate structured output without errors", async () => { + const model = new ChatGoogleGenerativeAI({ + model: "gemini-1.5-flash", + temperature: 0.7, + }); + const structuredLlm = model.withStructuredOutput(baseSchema); + const request = "Generate a structured response for a user."; + const result = await structuredLlm.invoke(request); + console.log("Valid Schema Result:", result); + expect(result).toBeDefined(); + expect(result).toHaveProperty("name"); + expect(result).toHaveProperty("age"); +}); + +test("Google AI - Validate nested schema structures", async () => { + const schema = z.object({ + name: z.string(), + details: z.object({ + age: z.number(), + address: z.string(), + }), + }); + const model = new ChatGoogleGenerativeAI({ + model: "gemini-1.5-flash", + temperature: 0.7, + }); + const structuredLlm = model.withStructuredOutput(schema); + const request = "Generate structured data with nested schema."; + const result = await structuredLlm.invoke(request); + console.log("Nested Schema Result:", result); + expect(result).toBeDefined(); + expect(result.details).toHaveProperty("age"); + expect(result.details).toHaveProperty("address"); +}); + +test("Google AI - Handle optional fields in schema", async () => { + const schema = z.object({ + name: z.string(), + age: z.number(), + email: z.string().optional(), + }); + const model = new ChatGoogleGenerativeAI({ + model: "gemini-1.5-flash", + temperature: 0.7, + }); + const structuredLlm = model.withStructuredOutput(schema); + const request = "Generate structured data with optional fields."; + const result = await structuredLlm.invoke(request); + console.log("Optional Fields Result:", result); + expect(result).toBeDefined(); + expect(result).toHaveProperty("name"); + expect(result).toHaveProperty("age"); + expect(result).toHaveProperty("email"); +}); + +test("Google AI - Validate schema with large payloads", async () => { + const schema = z.object({ + name: z.string(), + age: z.number(), + address: z.string(), + phone: z.string(), + email: z.string(), + }); + const model = new ChatGoogleGenerativeAI({ + model: "gemini-1.5-flash", + temperature: 0.7, + }); + const structuredLlm = model.withStructuredOutput(schema); + const request = "Generate structured data for a user with many fields."; + const result = await structuredLlm.invoke(request); + console.log("Large Payload Result:", result); + expect(result).toBeDefined(); + expect(result).toHaveProperty("name"); + expect(result).toHaveProperty("age"); + expect(result).toHaveProperty("address"); + expect(result).toHaveProperty("phone"); + expect(result).toHaveProperty("email"); +}); + +test("Google AI - Handle schema with deeply nested structures", async () => { + const schema = z.object({ + user: z.object({ + id: z.string(), + profile: z.object({ + details: z.object({ + name: z.string(), + age: z.number(), + preferences: z.object({ + favoriteColor: z.string(), + hobbies: z.array(z.string()), + }), + }), + }), + }), + }); + const model = new ChatGoogleGenerativeAI({ + model: "gemini-1.5-flash", + temperature: 0.7, + }); + const structuredLlm = model.withStructuredOutput(schema); + const request = "Generate a deeply nested user profile structure."; + const result = await structuredLlm.invoke(request); + console.log("Deeply Nested Schema Result:", result); + expect(result).toBeDefined(); + expect(result.user.profile.details.preferences).toHaveProperty( + "favoriteColor" + ); + expect(Array.isArray(result.user.profile.details.preferences.hobbies)).toBe( + true + ); +}); + +test("Google AI - Handle schema with enum fields", async () => { + const schema = z.object({ + name: z.string(), + role: z.enum(["admin", "editor", "viewer"]), + }); + const model = new ChatGoogleGenerativeAI({ + model: "gemini-1.5-flash", + temperature: 0.7, + }); + const structuredLlm = model.withStructuredOutput(schema); + const request = + "Generate structured data with a name and a role (admin, editor, or viewer)."; + const result = await structuredLlm.invoke(request); + console.log("Enum Fields Result:", result); + expect(result).toBeDefined(); + expect(result).toHaveProperty("name"); + expect(result).toHaveProperty("role"); + expect(["admin", "editor", "viewer"]).toContain(result.role); +});