-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
222 lines (182 loc) · 8.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import networkx as nx
import numpy as np
import multiprocessing as mp
import random
# # approximate
def get_edge_mask_link_negative_approximate(mask_link_positive, num_nodes, num_negtive_edges):
links_temp = np.zeros((num_nodes, num_nodes)) + np.identity(num_nodes)
mask_link_positive = duplicate_edges(mask_link_positive)
links_temp[mask_link_positive[0],mask_link_positive[1]] = 1
# add random noise
links_temp += np.random.rand(num_nodes,num_nodes)
prob = num_negtive_edges / (num_nodes*num_nodes-mask_link_positive.shape[1])
mask_link_negative = np.stack(np.nonzero(links_temp<prob))
return mask_link_negative
# exact version, slower
def get_edge_mask_link_negative(mask_link_positive, num_nodes, num_negtive_edges):
mask_link_positive_set = []
for i in range(mask_link_positive.shape[1]):
mask_link_positive_set.append(tuple(mask_link_positive[:,i]))
mask_link_positive_set = set(mask_link_positive_set)
mask_link_negative = np.zeros((2,num_negtive_edges), dtype=mask_link_positive.dtype)
for i in range(num_negtive_edges):
while True:
mask_temp = tuple(np.random.choice(num_nodes,size=(2,),replace=False))
if mask_temp not in mask_link_positive_set:
mask_link_negative[:,i] = mask_temp
break
return mask_link_negative
def resample_edge_mask_link_negative(data):
data.mask_link_negative_train = get_edge_mask_link_negative(data.mask_link_positive_train, num_nodes=data.num_nodes,
num_negtive_edges=data.mask_link_positive_train.shape[1])
data.mask_link_negative_val = get_edge_mask_link_negative(data.mask_link_positive, num_nodes=data.num_nodes,
num_negtive_edges=data.mask_link_positive_val.shape[1])
data.mask_link_negative_test = get_edge_mask_link_negative(data.mask_link_positive, num_nodes=data.num_nodes,
num_negtive_edges=data.mask_link_positive_test.shape[1])
def deduplicate_edges(edges):
edges_new = np.zeros((2,edges.shape[1]//2), dtype=int)
# add none self edge
j = 0
skip_node = set() # node already put into result
for i in range(edges.shape[1]):
if edges[0,i]<edges[1,i]:
edges_new[:,j] = edges[:,i]
j += 1
elif edges[0,i]==edges[1,i] and edges[0,i] not in skip_node:
edges_new[:,j] = edges[:,i]
skip_node.add(edges[0,i])
j += 1
return edges_new
def duplicate_edges(edges):
return np.concatenate((edges, edges[::-1,:]), axis=-1)
# each node at least remain in the new graph
def split_edges(edges, remove_ratio, connected=False):
e = edges.shape[1]
edges = edges[:, np.random.permutation(e)]
if connected:
unique, counts = np.unique(edges, return_counts=True)
node_count = dict(zip(unique, counts))
index_train = []
index_val = []
for i in range(e):
node1 = edges[0,i]
node2 = edges[1,i]
if node_count[node1]>1 and node_count[node2]>1: # if degree>1
index_val.append(i)
node_count[node1] -= 1
node_count[node2] -= 1
if len(index_val) == int(e * remove_ratio):
break
else:
index_train.append(i)
index_train = index_train + list(range(i + 1, e))
index_test = index_val[:len(index_val)//2]
index_val = index_val[len(index_val)//2:]
edges_train = edges[:, index_train]
edges_val = edges[:, index_val]
edges_test = edges[:, index_test]
else:
split1 = int((1-remove_ratio)*e)
split2 = int((1-remove_ratio/2)*e)
edges_train = edges[:,:split1]
edges_val = edges[:,split1:split2]
edges_test = edges[:,split2:]
return edges_train, edges_val, edges_test
def edge_to_set(edges):
edge_set = []
for i in range(edges.shape[1]):
edge_set.append(tuple(edges[:, i]))
edge_set = set(edge_set)
return edge_set
def get_link_mask(data, remove_ratio=0.2, resplit=True, infer_link_positive=True):
if resplit:
if infer_link_positive:
data.mask_link_positive = deduplicate_edges(data.edge_index.numpy())
data.mask_link_positive_train, data.mask_link_positive_val, data.mask_link_positive_test = \
split_edges(data.mask_link_positive, remove_ratio)
resample_edge_mask_link_negative(data)
def add_nx_graph(data):
G = nx.Graph()
edge_numpy = data.edge_index.numpy()
edge_list = []
for i in range(data.num_edges):
edge_list.append(tuple(edge_numpy[:, i]))
G.add_edges_from(edge_list)
data.G = G
def single_source_shortest_path_length_range(graph, node_range, cutoff):
dists_dict = {}
for node in node_range:
dists_dict[node] = nx.single_source_shortest_path_length(graph, node, cutoff)
return dists_dict
def merge_dicts(dicts):
result = {}
for dictionary in dicts:
result.update(dictionary)
return result
def all_pairs_shortest_path_length_parallel(graph,cutoff=None,num_workers=4):
nodes = list(graph.nodes)
random.shuffle(nodes)
if len(nodes)<50:
num_workers = int(num_workers/4)
elif len(nodes)<400:
num_workers = int(num_workers/2)
pool = mp.Pool(processes=num_workers)
results = [pool.apply_async(single_source_shortest_path_length_range,
args=(graph, nodes[int(len(nodes)/num_workers*i):int(len(nodes)/num_workers*(i+1))], cutoff)) for i in range(num_workers)]
output = [p.get() for p in results]
dists_dict = merge_dicts(output)
pool.close()
pool.join()
return dists_dict
def precompute_dist_data(edge_index, num_nodes, approximate=0):
'''
Here dist is 1/real_dist, higher actually means closer, 0 means disconnected
:return:
'''
graph = nx.Graph()
edge_list = edge_index.transpose(1,0).tolist()
graph.add_edges_from(edge_list)
n = num_nodes
dists_array = np.zeros((n, n))
# dists_dict = nx.all_pairs_shortest_path_length(graph,cutoff=approximate if approximate>0 else None)
# dists_dict = {c[0]: c[1] for c in dists_dict}
dists_dict = all_pairs_shortest_path_length_parallel(graph,cutoff=approximate if approximate>0 else None)
for i, node_i in enumerate(graph.nodes()):
shortest_dist = dists_dict[node_i]
for j, node_j in enumerate(graph.nodes()):
dist = shortest_dist.get(node_j, -1)
if dist!=-1:
# dists_array[i, j] = 1 / (dist + 1)
dists_array[node_i, node_j] = 1 / (dist + 1)
return dists_array
def get_random_anchorset(n,c=0.5):
m = int(np.log2(n))
copy = int(c*m)
anchorset_id = []
for i in range(m):
anchor_size = int(n/np.exp2(i + 1))
for j in range(copy):
anchorset_id.append(np.random.choice(n,size=anchor_size,replace=False))
return anchorset_id
def get_dist_max(anchorset_id, dist, device):
dist_max = torch.zeros((dist.shape[0],len(anchorset_id))).to(device)
dist_argmax = torch.zeros((dist.shape[0],len(anchorset_id))).long().to(device)
for i in range(len(anchorset_id)):
temp_id = anchorset_id[i]
dist_temp = dist[:, temp_id]
dist_max_temp, dist_argmax_temp = torch.max(dist_temp, dim=-1)
dist_max[:,i] = dist_max_temp
dist_argmax[:,i] = dist_argmax_temp
return dist_max, dist_argmax
def preselect_anchor(data, layer_num=1, anchor_num=32, anchor_size_num=4, device='cpu'):
data.anchor_size_num = anchor_size_num
data.anchor_set = []
anchor_num_per_size = anchor_num//anchor_size_num
for i in range(anchor_size_num):
anchor_size = 2**(i+1)-1
anchors = np.random.choice(data.num_nodes, size=(layer_num,anchor_num_per_size,anchor_size), replace=True)
data.anchor_set.append(anchors)
data.anchor_set_indicator = np.zeros((layer_num, anchor_num, data.num_nodes), dtype=int)
anchorset_id = get_random_anchorset(data.num_nodes,c=1)
data.dists_max, data.dists_argmax = get_dist_max(anchorset_id, data.dists, device)