-
Notifications
You must be signed in to change notification settings - Fork 0
/
analysis.py
33 lines (30 loc) · 1.27 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
models_config = []
models_config.append(['GCN', 3, -1])
models_config.append(['SAGE', 3, -1])
models_config.append(['GAT', 3, -1])
models_config.append(['GIN', 3, -1])
models_config.append(['PGNN_fast', 1, 2])
models_config.append(['PGNN_fast', 2, 2])
models_config.append(['PGNN_fast', 1, -1])
models_config.append(['PGNN_fast', 2, -1])
fname_missing = []
for task in ['link', 'link_pair']:
if task == 'link':
datasets_name = ['Cora','grid','communities','ppi']
else:
datasets_name = ['communities', 'email', 'protein']
for dataset_name in datasets_name:
for model_config in models_config:
results = []
for repeat in range(10):
fname = 'results/{}_{}_{}_layer{}_approximate{}_repeat{}.txt'.format(
task, model_config[0], dataset_name, model_config[1], model_config[2], repeat)
try:
with open(fname,'r') as f:
result = f.read()
results.append(float(result))
except:
fname_missing.append(fname)
results = np.array(results)
print('{}\t\t\t\t\t{}\t{}\t{}'.format(fname,np.mean(results).round(4), np.std(results).round(4), len(results)))