forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SparseBlasImpl.cpp
710 lines (641 loc) · 22.3 KB
/
SparseBlasImpl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/SparseCsrTensorImpl.h>
#include <ATen/Tensor.h>
#include <ATen/mkl/Sparse.h>
#include <ATen/native/LinearAlgebraUtils.h>
#include <ATen/SparseCsrTensorUtils.h>
#include <ATen/native/mkl/SparseBlasImpl.h>
#include <c10/core/ScalarType.h>
#include <c10/util/MaybeOwned.h>
#if AT_USE_MKL_SPARSE()
#include <ATen/mkl/SparseBlas.h>
#include <ATen/mkl/SparseDescriptors.h>
#include <ATen/mkl/Utils.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/cat.h>
#include <ATen/ops/sparse_coo_tensor.h>
#endif
namespace at {
namespace native {
namespace sparse {
namespace impl {
namespace mkl {
namespace {
#if AT_USE_MKL_SPARSE()
c10::MaybeOwned<Tensor> prepare_dense_matrix_for_mkl(
const Tensor& tensor) {
if (tensor.is_non_overlapping_and_dense() ||
is_blas_compatible_row_major_order(tensor) ||
is_blas_compatible_column_major_order(tensor)) {
return at::native::expect_resolved_conj(tensor);
} else {
return c10::MaybeOwned<Tensor>::owned(
tensor.clone(at::MemoryFormat::Contiguous));
}
}
/*
Get row-major or column-major matrix.
Args:
* `tensor` - 2D strided Tensor.
* `row_major` - controls the memory layout.
*/
c10::MaybeOwned<Tensor> prepare_dense_matrix_for_mkl(
const Tensor& tensor,
bool row_major) {
if (is_blas_compatible_row_major_order(tensor) && row_major) {
return at::native::expect_resolved_conj(tensor);
} else {
if (row_major) {
return c10::MaybeOwned<Tensor>::owned(
tensor.clone(at::MemoryFormat::Contiguous));
} else {
return c10::MaybeOwned<Tensor>::owned(cloneBatchedColumnMajor(tensor));
}
}
}
c10::MaybeOwned<Tensor> inline prepare_dense_vector_for_mkl(
const Tensor& tensor) {
if (tensor.is_non_overlapping_and_dense()) {
return c10::MaybeOwned<Tensor>::borrowed(tensor);
} else {
return c10::MaybeOwned<Tensor>::owned(
tensor.clone(at::MemoryFormat::Contiguous));
}
}
void inline indices_to_mkl_compatible_inplace(const Tensor& input) {
#ifdef MKL_ILP64
// ILP64 is a 64-bit API version of MKL
// Indices tensor must have ScalarType::Long type
static_cast<SparseCsrTensorImpl*>(input.unsafeGetTensorImpl())
->set_member_tensors(
input.crow_indices().to(kLong),
input.col_indices().to(kLong),
input.values(),
input.sizes());
#else
// LP64 is a 32-bit API version of MKL
// Indices tensor must have ScalarType::Int type
static_cast<SparseCsrTensorImpl*>(input.unsafeGetTensorImpl())
->set_member_tensors(
input.crow_indices().to(kInt),
input.col_indices().to(kInt),
input.values(),
input.sizes());
#endif
}
void inline col_indices_and_values_resize_(const Tensor& input, int64_t nnz) {
static_cast<SparseCsrTensorImpl*>(input.unsafeGetTensorImpl())
->set_member_tensors(
input.crow_indices(),
input.col_indices().resize_({nnz}),
input.values().resize_({nnz}),
input.sizes());
}
/*
Resizes `input` tensor and fills it with the data from MKL.
*/
template <typename scalar_t>
void mkl_result_copy_(const Tensor& input, sparse_matrix_t mkl_desc) {
sparse_index_base_t indexing = SPARSE_INDEX_BASE_ZERO;
MKL_INT rows, cols;
MKL_INT *rows_start = nullptr, *rows_end = nullptr, *columns = nullptr;
scalar_t* values = nullptr;
at::mkl::sparse::export_csr(
mkl_desc,
&indexing,
&rows,
&cols,
&rows_start,
&rows_end,
&columns,
&values);
// Resize input using nnz information from MKL
MKL_INT nnz = rows_end[rows - 1];
col_indices_and_values_resize_(input, nnz);
auto crow_indices = input.crow_indices();
auto col_indices = input.col_indices();
auto input_values = input.values();
// NB: When nnz is zero it is possible that input_values.data_ptr<scalar_t> is
// a nullptr, if input was created via empty. As such we need to check that
// nnz is not zero to avoid passing nullptr to std::memcpy. We will apply
// the same precautions to crow_indices.data_ptr<MKL_INT>.
//
// Otherwise ASAN will complain.
if (nnz > 0) {
// MKL Sparse Inspector-Executor doesn't have a way to provide external
// buffers So we have to copy the memory allocated by MKL
std::memcpy(
input_values.mutable_data_ptr<scalar_t>(), values, nnz * sizeof(scalar_t));
std::memcpy(
col_indices.mutable_data_ptr<MKL_INT>(), columns, nnz * sizeof(MKL_INT));
}
if (rows > 0) {
std::memcpy(
crow_indices.mutable_data_ptr<MKL_INT>(), rows_start, rows * sizeof(MKL_INT));
}
crow_indices.mutable_data_ptr<MKL_INT>()[rows] = nnz;
}
#endif
/*
Computes a sparse matrix-dense matrix product defined as
C <- alpha*(A*B) + beta*C
Args:
* `A` - Sparse Tensor storing m x k matrix.
* `B` - Dense Tensor storing k x n matrix.
* `C` - [in] Dense Tensor storing matrix of size m x n.
[out] result of the operation.
*/
void addmm_dense_result(
const Tensor& A,
const Tensor& B,
const Scalar& beta,
const Scalar& alpha,
const Tensor& C) {
#if !AT_USE_MKL_SPARSE()
TORCH_CHECK(
false,
"Calling addmm on a sparse CPU tensor requires Linux platform. ",
"Please use PyTorch built with MKL on Linux.");
#else
c10::MaybeOwned<Tensor> C_ = prepare_dense_matrix_for_mkl(C);
IntArrayRef C_strides = C_->strides();
auto ndim = C_->dim();
bool is_C_row_major = (C_strides[ndim - 1] == 1);
// MKL requires same storage layout of matrices
c10::MaybeOwned<Tensor> B_ = prepare_dense_matrix_for_mkl(B, is_C_row_major);
IntArrayRef B_strides = B_->strides();
bool is_B_row_major = (B_strides[ndim - 1] == 1);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!(is_C_row_major ^ is_B_row_major));
auto order =
is_C_row_major ? SPARSE_LAYOUT_ROW_MAJOR : SPARSE_LAYOUT_COLUMN_MAJOR;
auto ldc = is_C_row_major ? C_strides[ndim - 2] : C_strides[ndim - 1];
auto ldb = is_B_row_major ? B_strides[ndim - 2] : B_strides[ndim - 1];
auto columns_C = mkl_int_cast(C.size(-1), "columns_C");
matrix_descr descrA;
descrA.type = SPARSE_MATRIX_TYPE_GENERAL;
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
C.scalar_type(), "addmm_out_sparse_csr_impl_mkl", [&] {
auto beta_ = beta.to<scalar_t>();
auto alpha_ = alpha.to<scalar_t>();
auto mkl_sparse_mat =
at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(A);
at::mkl::sparse::mm<scalar_t>(
SPARSE_OPERATION_NON_TRANSPOSE,
alpha_,
mkl_sparse_mat.descriptor(),
descrA,
order,
B_->data_ptr<scalar_t>(),
columns_C,
ldb,
beta_,
C_->data_ptr<scalar_t>(),
ldc);
});
if (!C.is_same(*C_)) {
C.copy_(*C_);
}
#endif
}
/*
Computes a sparse matrix-sparse matrix product with dense result defined as
C <- alpha*(A*B) + beta*C
Args:
* `A` - Sparse Tensor storing m x k matrix.
* `B` - Sparse Tensor storing k x n matrix.
* `C` - [in] Dense Tensor storing matrix of size m x n.
[out] result of the operation.
*/
void addmm_sparse_input_dense_result(
const Tensor& A,
const Tensor& B,
const Scalar& beta,
const Scalar& alpha,
const Tensor& C) {
#if !AT_USE_MKL_SPARSE()
TORCH_CHECK(
false,
"Calling addmm on a sparse CPU tensor requires Linux platform. ",
"Please use PyTorch built with MKL on Linux.");
#else
// MKL function computes C <- A*B
// So we need a temporary matrix to store the result
// and then add it to C
auto C_ = at::empty(C.sizes(), C.options());
auto order = SPARSE_LAYOUT_ROW_MAJOR;
auto ldc = C_.stride(-2);
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
C.scalar_type(), "addmm_sparse_input_dense_result", [&] {
auto mkl_A = at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(A);
auto mkl_B = at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(B);
at::mkl::sparse::spmmd<scalar_t>(
SPARSE_OPERATION_NON_TRANSPOSE,
mkl_A.descriptor(),
mkl_B.descriptor(),
order,
C_.data_ptr<scalar_t>(),
ldc);
});
// If beta is zero NaN and Inf should not be propagated to the result
if (beta.toComplexDouble() == 0.) {
C.zero_();
} else {
C.mul_(beta);
}
C.add_(C_, alpha);
#endif
}
/*
Computes a sparse matrix-sparse matrix product defined as
C <- alpha*(A*B) + beta*C
Args:
* `mat1` - Sparse CSR Tensor storing m x k matrix A.
* `mat2` - Sparse CSR Tensor storing k x n matrix B.
* `result` - [in] Sparse CSR Tensor storing matrix C of size m x n.
[out] result of the operation.
*/
void addmm_sparse_result(
const Tensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
const Tensor& result) {
#if !AT_USE_MKL_SPARSE()
TORCH_CHECK(
false,
"Calling add on a sparse CPU tensor requires Linux platform. ",
"Please use PyTorch built with MKL on Linux.");
#else
// Compute beta*result because MKL doesn't do it
// If beta is zero NaN and Inf should not be propagated to the result
if (beta.toComplexDouble() == 0.) {
result.values().zero_();
} else {
result.values().mul_(beta);
}
// MKL doesn't work with empty matrices
if (mat1._nnz() == 0 || mat2._nnz() == 0) {
return;
}
// MKL doesn't have an interface to compute alpha*(A*B) + beta*C at once
Tensor mat1_mat2 = at::zeros(result.sizes(), result.options());
indices_to_mkl_compatible_inplace(mat1_mat2);
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
result.scalar_type(), "addmm_out_sparse_csr_impl_mkl_sparse", [&] {
auto mkl_sparse_mat1 =
at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(mat1);
auto mkl_sparse_mat2 =
at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(mat2);
auto mkl_result = at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>();
auto result_desc = mkl_result.descriptor();
TORCH_MKLSPARSE_CHECK(mkl_sparse_spmm(
SPARSE_OPERATION_NON_TRANSPOSE,
mkl_sparse_mat1.descriptor(),
mkl_sparse_mat2.descriptor(),
&result_desc));
// copy the data from MKL, otherwise computed result will be destroyed
// together with `mkl_result`
mkl_result_copy_<scalar_t>(mat1_mat2, result_desc);
});
result.add_(mat1_mat2, alpha);
#endif
}
} // anonymous namespace
/*
Computes a matrix-matrix product defined as
C <- alpha*(A*B) + beta*C
Args:
* `mat1` - Tensor storing m x k matrix A.
* `mat2` - Tensor storing k x n matrix B.
* `result` - [in] Tensor storing matrix C of size m x n.
[out] result of the operation.
*/
void addmm_out_sparse_csr(
const Tensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
const Tensor& result) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
mat1.dim() == 2 && mat2.dim() == 2 && result.dim() == 2);
TORCH_INTERNAL_ASSERT(
!((mat1.layout() == kStrided) && (mat2.layout() == kStrided) &&
(result.layout() == kStrided)),
"Expected at least one sparse input");
// Layout checks are nested mat1, mat2, result
// Conditions are ordered strided, csr, csc, bsr, bsc.
// Valid combinations terminate in a return
// Invalid combinations are omitted and will fall though to the TORCH check
// generating an informative error message
if (mat1.layout() == kStrided) {
if (mat2.layout() == kSparseCsr) {
if (result.layout() == kStrided) {
// TODO: Add native CSC support via cuSPARSE if supported.
return addmm_dense_result(
mat2.transpose(0, 1).to_sparse_csr(),
mat1.transpose(0, 1),
beta,
alpha,
result.transpose(0, 1));
}
}
if (mat2.layout() == kSparseCsc) {
if (result.layout() == kStrided) {
return addmm_dense_result(
mat2.transpose(-2, -1),
mat1.transpose(-2, -1),
beta,
alpha,
result.transpose(-2, -1));
}
}
if (mat2.layout() == kSparseBsc) {
if (result.layout() == kStrided) {
return addmm_dense_result(
mat2.transpose(-2, -1),
mat1.transpose(-2, -1),
beta,
alpha,
result.transpose(-2, -1));
}
}
}
if (mat1.layout() == kSparseCsr) {
if (mat2.layout() == kStrided) {
if (result.layout() == kStrided) {
return addmm_dense_result(mat1, mat2, beta, alpha, result);
}
}
if (mat2.layout() == kSparseCsr) {
if (result.layout() == kStrided) {
return addmm_sparse_input_dense_result(mat1, mat2, beta, alpha, result);
}
if (result.layout() == kSparseCsr) {
return addmm_sparse_result(mat1, mat2, beta, alpha, result);
}
}
if (mat2.layout() == kSparseCsc) {
if (result.layout() == kStrided) {
// TODO: CSR @ CSC kernel would be very fast due to format alignment
return addmm_sparse_input_dense_result(
mat1, mat2.to_sparse_csr(), beta, alpha, result);
}
if (result.layout() == kSparseCsr) {
// TODO: CSR @ CSC kernel would be very fast due to format alignment
return addmm_sparse_result(
mat1, mat2.to_sparse_csr(), beta, alpha, result);
}
}
}
if (mat1.layout() == kSparseCsc) {
if (mat2.layout() == kStrided) {
if (result.layout() == kStrided) {
// TODO: avoid csc->csr conversion with native csc support
return addmm_dense_result(
mat1.to_sparse_csr(), mat2, beta, alpha, result);
}
}
if (mat2.layout() == kSparseCsr) {
if (result.layout() == kSparseCsr) {
// TODO: avoid csc->csr conversion with native csc support
return addmm_sparse_result(
mat1.to_sparse_csr(), mat2, beta, alpha, result);
}
}
if (mat2.layout() == kSparseCsc) {
if (result.layout() == kStrided) {
return addmm_sparse_input_dense_result(
mat2.transpose(-2, -1),
mat1.transpose(-2, -1),
beta,
alpha,
result.transpose(-2, -1));
}
if (result.layout() == kSparseCsr) {
// TODO avoid csc->csr
return addmm_sparse_result(
mat1.to_sparse_csr(), mat2.to_sparse_csr(), beta, alpha, result);
}
if (result.layout() == kSparseCsc) {
return addmm_sparse_result(
mat2.transpose(-2, -1),
mat1.transpose(-2, -1),
beta,
alpha,
result.transpose(-2, -1));
}
}
}
if (mat1.layout() == kSparseBsr) {
if (mat2.layout() == kStrided) {
if (result.layout() == kStrided) {
return addmm_dense_result(mat1, mat2, beta, alpha, result);
}
}
}
TORCH_CHECK(
false,
"addmm: computation on CPU is not implemented for ",
result.layout(),
" + ",
mat1.layout(),
" @ ",
mat2.layout());
}
/*
Computes a sparse matrix-dense vector product defined as
y <- alpha*op(A)*x + beta*y
Args:
* `mat` - Tensor storing sparse m x n matrix A.
* `vec` - Tensor storing dense vector x of size n.
* `result` - [in] Tensor storing dense vector y of size m.
[out] result of the operation.
*/
void addmv_out_sparse_csr(
const Tensor& mat,
const Tensor& vec,
const Scalar& beta,
const Scalar& alpha,
const Tensor& result) {
#if !AT_USE_MKL_SPARSE()
TORCH_CHECK(
false,
"Calling addmv on a sparse CPU tensor requires Linux platform. ",
"Please use PyTorch built with MKL on Linux.");
#else
c10::MaybeOwned<Tensor> result_ = prepare_dense_vector_for_mkl(result);
c10::MaybeOwned<Tensor> vec_ = prepare_dense_vector_for_mkl(vec);
sparse_operation_t opA = SPARSE_OPERATION_NON_TRANSPOSE;
matrix_descr descrA;
descrA.type = SPARSE_MATRIX_TYPE_GENERAL;
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
result.scalar_type(), "addmv_out_sparse_csr_impl_mkl", [&] {
auto beta_ = beta.to<scalar_t>();
auto alpha_ = alpha.to<scalar_t>();
auto mkl_sparse_mat =
at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(mat);
at::mkl::sparse::mv<scalar_t>(
opA,
alpha_,
mkl_sparse_mat.descriptor(),
descrA,
vec_->data_ptr<scalar_t>(),
beta_,
result_->data_ptr<scalar_t>());
});
if (!result.is_same(*result_)) {
result.copy_(*result_);
}
#endif
}
void add_out_sparse_csr(
const Tensor& mat1,
const Tensor& mat2,
const Scalar& alpha,
const Tensor& result) {
#if !AT_USE_MKL_SPARSE()
TORCH_CHECK(
false,
"Calling add on a sparse CPU tensor requires Linux platform. ",
"Please use PyTorch built with MKL on Linux.");
#else
// MKL doesn't work with empty matrices
if (mat2._nnz() == 0) {
col_indices_and_values_resize_(result, mat1._nnz());
result.copy_(mat1);
return;
} else if (mat1._nnz() == 0) {
col_indices_and_values_resize_(result, mat2._nnz());
result.copy_(mat2);
result.values().mul_(alpha);
return;
}
// Modify `result` tensor in-place to swap indices tensors with 32-bit (or
// 64-bit) variants
const auto output_indices_dtype = promoteTypes(mat1.crow_indices().scalar_type(), mat2.crow_indices().scalar_type());
auto result_crow_indices_backup = result.crow_indices();
auto result_col_indices_backup = result.col_indices();
indices_to_mkl_compatible_inplace(result);
sparse_operation_t opA = SPARSE_OPERATION_NON_TRANSPOSE;
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
result.scalar_type(), "add_out_sparse_csr_impl_mkl", [&] {
auto alpha_ = alpha.to<scalar_t>();
auto mkl_mat1 = at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(mat1);
auto mkl_mat2 = at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(mat2);
auto mkl_result = at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>();
// Note that the order the order of mat1 and mat2 arguments is swapped
// because MKL computes alpha*mat1 + mat2 while PyTorch needs mat1 +
// alpha*mat2
auto result_desc = mkl_result.descriptor();
at::mkl::sparse::add<scalar_t>(
opA,
mkl_mat2.descriptor(),
alpha_,
mkl_mat1.descriptor(),
&result_desc);
// now copy data from `result_desc` to `result`
mkl_result_copy_<scalar_t>(result, result_desc);
});
if (output_indices_dtype == at::kLong) {
const auto res_nnz = result._nnz();
static_cast<SparseCsrTensorImpl*>(result.unsafeGetTensorImpl())->set_member_tensors(
result_crow_indices_backup.copy_(result.crow_indices()),
result_col_indices_backup.resize_({res_nnz}).copy_(result.col_indices()),
result.values(),
result.sizes());
}
#endif
}
void triangular_solve_out_sparse_csr(
const Tensor& A_,
const Tensor& B,
const Tensor& X,
bool upper,
bool transpose,
bool unitriangular) {
#if !AT_USE_MKL_SPARSE()
TORCH_CHECK(
false,
"Calling triangular_solve on a sparse CPU tensor requires Linux platform. ",
"Please use PyTorch built with MKL on Linux.");
#else
if (B.numel() == 0 || X.numel() == 0 || A_._nnz() == 0) {
// If A has no nnz, then A is singular and we can't solve.
X.fill_(NAN);
return;
}
const auto materialize_diagonal_indices = [](const Tensor& t) -> Tensor {
const auto n = t.size(-1);
const auto compressed_indices = std::get<0>(at::sparse_csr::getCompressedPlainIndices(t));
const auto diag_indices = at::arange(n, compressed_indices.options()).unsqueeze(0).expand({2, n});
const auto diag_values = at::zeros({1}, t.values().options()).expand({n});
const auto t_coo = t.to_sparse();
const auto expanded_indices = at::cat({t_coo._indices(), diag_indices}, /*dim=*/-1);
const auto expanded_values = at::cat({t_coo._values(), diag_values}, /*dim=*/0);
const auto t_expanded_coo = at::sparse_coo_tensor(expanded_indices, expanded_values, t_coo.sizes(), t_coo.options());
return t_expanded_coo.to_sparse(t.layout());
};
// MKL has a bug for inputs with unmaterialized diagonal indices.
// See https://github.com/pytorch/pytorch/issues/88890 and
// the comments within.
const auto A = unitriangular ? materialize_diagonal_indices(A_) : A_;
c10::MaybeOwned<Tensor> X_ = prepare_dense_matrix_for_mkl(X);
IntArrayRef X_strides = X_->strides();
auto ndim = X_->dim();
bool is_X_row_major = (ndim > 1) ? (X_strides[ndim - 1] == 1) : true;
// MKL requires same storage layout of matrices
c10::MaybeOwned<Tensor> B_ = prepare_dense_matrix_for_mkl(B, is_X_row_major);
sparse_operation_t opA = transpose ? SPARSE_OPERATION_TRANSPOSE : SPARSE_OPERATION_NON_TRANSPOSE;
matrix_descr descrA;
descrA.type = SPARSE_MATRIX_TYPE_TRIANGULAR;
descrA.mode = upper ? SPARSE_FILL_MODE_UPPER : SPARSE_FILL_MODE_LOWER;
descrA.diag = unitriangular ? SPARSE_DIAG_UNIT : SPARSE_DIAG_NON_UNIT;
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
X.scalar_type(), "triangular_solve_out_sparse_csr_impl_mkl", [&] {
auto mkl_sparse_mat =
at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(A);
scalar_t alpha = 1;
if (B.size(-1) == 1) {
at::mkl::sparse::trsv<scalar_t>(
opA,
alpha,
mkl_sparse_mat.descriptor(),
descrA,
B_->data_ptr<scalar_t>(),
X_->data_ptr<scalar_t>());
} else {
IntArrayRef B_strides = B_->strides();
bool is_B_row_major = (B_strides[ndim - 1] == 1);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!(is_X_row_major ^ is_B_row_major));
auto order = is_X_row_major ? SPARSE_LAYOUT_ROW_MAJOR : SPARSE_LAYOUT_COLUMN_MAJOR;
auto nrhs = mkl_int_cast(B.size(-1), "nrhs");
auto ldx = is_X_row_major ? X_strides[ndim - 2] : X_strides[ndim - 1];
auto ldb = is_B_row_major ? B_strides[ndim - 2] : B_strides[ndim - 1];
at::mkl::sparse::trsm<scalar_t>(
opA,
alpha,
mkl_sparse_mat.descriptor(),
descrA,
order,
B_->data_ptr<scalar_t>(),
nrhs,
ldb,
X_->data_ptr<scalar_t>(),
ldx);
}
});
if (!X.is_same(*X_)) {
X.copy_(*X_);
}
#endif
}
} // namespace mkl
} // namespace impl
} // namespace sparse
} // namespace native
} // namespace at