forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FusedAdamKernel.cpp
379 lines (355 loc) · 14.6 KB
/
FusedAdamKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Parallel.h>
#include <ATen/OpMathType.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/FusedAdam.h>
#include <ATen/Dispatch.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
namespace at::native {
namespace{
template <typename scalar_t, typename opmath_t, ADAM_MODE adam_mode>
typename std::enable_if<
std::is_same<scalar_t, Half>::value || std::is_same<scalar_t, BFloat16>::value,
void>::
type inline adam_math(
scalar_t* param_ptr,
scalar_t* exp_avg_ptr,
scalar_t* exp_avg_sq_ptr,
scalar_t* grad_ptr,
scalar_t* max_exp_avg_sq_ptr,
double lr,
double bias_correction1,
double bias_correction2,
double exp_avg_grad_coefficient,
double exp_avg_sq_grad_coefficient,
double bias_correction2_sqrt,
double eps,
double weight_decay,
double beta2,
bool amsgrad,
bool maximize,
const float* grad_scale_ptr,
int64_t size
){
double step_size = lr / bias_correction1;
using lpVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<opmath_t>;
lpVec grad_vec_to_store;
int64_t d = 0;
fVec param_vec1, param_vec2;
fVec grad_vec1, grad_vec2;
fVec exp_avg_vec1, exp_avg_vec2;
fVec exp_avg_sq_vec1, exp_avg_sq_vec2;
fVec max_exp_avg_sq_vec1, max_exp_avg_sq_vec2;
for (; d < size - (size % lpVec::size()); d += lpVec::size()) {
lpVec param_lpvec = lpVec::loadu(param_ptr + d);
std::tie(param_vec1, param_vec2) = vec::convert_to_float<scalar_t>(param_lpvec);
lpVec grad_lpvec = lpVec::loadu(grad_ptr + d);
std::tie(grad_vec1, grad_vec2) = vec::convert_to_float<scalar_t>(grad_lpvec);
if (grad_scale_ptr) {
grad_vec1 = grad_vec1 / fVec(float(*grad_scale_ptr));
grad_vec2 = grad_vec2 / fVec(float(*grad_scale_ptr));
grad_vec_to_store = vec::convert_from_float<scalar_t>(grad_vec1, grad_vec2);
grad_vec_to_store.store(grad_ptr + d);
}
if (maximize){
grad_vec1 = grad_vec1 * fVec(opmath_t(-1.0));
grad_vec2 = grad_vec2 * fVec(opmath_t(-1.0));
}
if (weight_decay != 0.f){
if constexpr (adam_mode == ADAM_MODE::ORIGINAL) {
grad_vec1 += param_vec1 * fVec(opmath_t(weight_decay));
grad_vec2 += param_vec2 * fVec(opmath_t(weight_decay));
} else if constexpr (adam_mode == ADAM_MODE::ADAMW) {
param_vec1 = param_vec1 * fVec(opmath_t(1 - lr * weight_decay));
param_vec2 = param_vec2 * fVec(opmath_t(1 - lr * weight_decay));
}
}
lpVec exp_avg_lpvec = lpVec::loadu(exp_avg_ptr + d);
std::tie(exp_avg_vec1, exp_avg_vec2) = vec::convert_to_float<scalar_t>(exp_avg_lpvec);
// exp_avg.lerp_(grad, 1 - beta1)
const fVec lerp_weight = fVec(opmath_t(exp_avg_grad_coefficient));
auto mask = lerp_weight.abs() < fVec(0.5);
auto coeff = fVec::blendv(lerp_weight - fVec(1), lerp_weight, mask);
auto base1 = fVec::blendv(grad_vec1, exp_avg_vec1, mask);
exp_avg_vec1 = vec::fmadd(coeff, grad_vec1 - exp_avg_vec1, base1);
auto base2 = fVec::blendv(grad_vec2, exp_avg_vec2, mask);
exp_avg_vec2 = vec::fmadd(coeff, grad_vec2 - exp_avg_vec2, base2);
lpVec exp_avg_sq_lpvec = lpVec::loadu(exp_avg_sq_ptr + d);
std::tie(exp_avg_sq_vec1, exp_avg_sq_vec2) = vec::convert_to_float<scalar_t>(exp_avg_sq_lpvec);
exp_avg_sq_vec1 = exp_avg_sq_vec1 * fVec(opmath_t(beta2)) +
fVec(opmath_t(exp_avg_sq_grad_coefficient)) * grad_vec1 * grad_vec1;
exp_avg_sq_vec2 = exp_avg_sq_vec2 * fVec(opmath_t(beta2)) +
fVec(opmath_t(exp_avg_sq_grad_coefficient)) * grad_vec2 * grad_vec2;
vec::convert_from_float<scalar_t>(exp_avg_vec1, exp_avg_vec2).store(exp_avg_ptr + d);
vec::convert_from_float<scalar_t>(exp_avg_sq_vec1, exp_avg_sq_vec2).store(exp_avg_sq_ptr + d);
fVec denom_vec1, denom_vec2;
if (amsgrad) {
lpVec max_exp_avg_sq_lpvec = lpVec::loadu(max_exp_avg_sq_ptr + d);
std::tie(max_exp_avg_sq_vec1, max_exp_avg_sq_vec2) = vec::convert_to_float<scalar_t>(max_exp_avg_sq_lpvec);
max_exp_avg_sq_vec1 = maximum(max_exp_avg_sq_vec1, exp_avg_sq_vec1);
max_exp_avg_sq_vec2 = maximum(max_exp_avg_sq_vec2, exp_avg_sq_vec2);
vec::convert_from_float<scalar_t>(max_exp_avg_sq_vec1, max_exp_avg_sq_vec2).store(max_exp_avg_sq_ptr + d);
denom_vec1 =
(max_exp_avg_sq_vec1.sqrt() / fVec(opmath_t(bias_correction2_sqrt))) + fVec(opmath_t(eps));
denom_vec2 =
(max_exp_avg_sq_vec2.sqrt() / fVec(opmath_t(bias_correction2_sqrt))) + fVec(opmath_t(eps));
} else {
denom_vec1 =
(exp_avg_sq_vec1.sqrt() / fVec(opmath_t(bias_correction2_sqrt))) + fVec(opmath_t(eps));
denom_vec2 =
(exp_avg_sq_vec2.sqrt() / fVec(opmath_t(bias_correction2_sqrt))) + fVec(opmath_t(eps));
}
param_vec1 = param_vec1 + fVec(opmath_t(-step_size)) * exp_avg_vec1 / denom_vec1;
param_vec2 = param_vec2 + fVec(opmath_t(-step_size)) * exp_avg_vec2 / denom_vec2;
vec::convert_from_float<scalar_t>(param_vec1, param_vec2).store(param_ptr + d);
}
scalar_t grad_val_to_store;
for (; d < size; d++) {
opmath_t grad_val = grad_ptr[d];
opmath_t param_val = param_ptr[d];
if (grad_scale_ptr) {
grad_val = grad_ptr[d] / float(*grad_scale_ptr);
grad_val_to_store = scalar_t(grad_val);
grad_ptr[d] = grad_val_to_store;
}
if (maximize) grad_val = -grad_val;
if (weight_decay != 0.f){
if constexpr (adam_mode == ADAM_MODE::ORIGINAL) {
grad_val += param_val * opmath_t(weight_decay);
} else if constexpr (adam_mode == ADAM_MODE::ADAMW) {
param_val = param_val * opmath_t(1 - lr * weight_decay);
}
}
// exp_avg.lerp_(grad, 1 - beta1)
opmath_t exp_avg_var = exp_avg_ptr[d];
auto is_lerp_weight_small = std::abs(opmath_t(exp_avg_grad_coefficient)) < opmath_t(0.5);
if (is_lerp_weight_small) {
exp_avg_var = exp_avg_var + opmath_t(exp_avg_grad_coefficient) * (grad_val - exp_avg_var);
} else {
exp_avg_var = grad_val - (grad_val - exp_avg_var) * (opmath_t(1) - opmath_t(exp_avg_grad_coefficient));
}
exp_avg_ptr[d] = scalar_t(exp_avg_var);
opmath_t exp_avg_sq_var = exp_avg_sq_ptr[d];
exp_avg_sq_var = exp_avg_sq_var * opmath_t(beta2);
exp_avg_sq_var = exp_avg_sq_var +
opmath_t(exp_avg_sq_grad_coefficient) * grad_val * grad_val;
exp_avg_sq_ptr[d] = scalar_t(exp_avg_sq_var);
opmath_t demon_val;
if (amsgrad) {
opmath_t max_exp_avg_sq_var = max_exp_avg_sq_ptr[d];
max_exp_avg_sq_var = std::max(max_exp_avg_sq_var, exp_avg_sq_var);
max_exp_avg_sq_ptr[d] =
scalar_t(max_exp_avg_sq_var);
demon_val =
std::sqrt(max_exp_avg_sq_var) / opmath_t(bias_correction2_sqrt) + opmath_t(eps);
} else {
demon_val = std::sqrt(exp_avg_sq_var) / opmath_t(bias_correction2_sqrt) + opmath_t(eps);
}
param_ptr[d] = param_val - opmath_t(step_size) * exp_avg_var / demon_val;
}
}
template <typename scalar_t, typename opmath_t, ADAM_MODE adam_mode>
typename std::enable_if<
std::is_same<scalar_t, float>::value || std::is_same<scalar_t, double>::value,
void>::
type inline adam_math(
scalar_t* param_ptr,
scalar_t* exp_avg_ptr,
scalar_t* exp_avg_sq_ptr,
scalar_t* grad_ptr,
scalar_t* max_exp_avg_sq_ptr,
double lr,
double bias_correction1,
double bias_correction2,
double exp_avg_grad_coefficient,
double exp_avg_sq_grad_coefficient,
double bias_correction2_sqrt,
double eps,
double weight_decay,
double beta2,
bool amsgrad,
bool maximize,
const float* grad_scale_ptr,
int64_t size
){
double step_size = lr / bias_correction1;
using Vec = at::vec::Vectorized<scalar_t>;
Vec grad_vec_to_store;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec param_vec = Vec::loadu(param_ptr + d);
Vec grad_vec = Vec::loadu(grad_ptr + d);
if (grad_scale_ptr) {
grad_vec = grad_vec / Vec(scalar_t(*grad_scale_ptr));
grad_vec_to_store = grad_vec;
grad_vec_to_store.store(grad_ptr + d);
}
if (maximize) grad_vec = grad_vec * Vec(scalar_t(-1.0));
if (weight_decay != 0.f){
if constexpr (adam_mode == ADAM_MODE::ORIGINAL) {
grad_vec += param_vec * Vec(scalar_t(weight_decay));
} else if constexpr (adam_mode == ADAM_MODE::ADAMW) {
param_vec = param_vec * Vec(scalar_t(1 - lr * weight_decay));
}
}
Vec exp_avg_vec = Vec::loadu(exp_avg_ptr + d);
// exp_avg.lerp_(grad, 1 - beta1)
const Vec lerp_weight = Vec(scalar_t(exp_avg_grad_coefficient));
auto mask = lerp_weight.abs() < Vec(0.5);
auto coeff = Vec::blendv(lerp_weight - Vec(1), lerp_weight, mask);
auto base = Vec::blendv(grad_vec, exp_avg_vec, mask);
exp_avg_vec = vec::fmadd(coeff, grad_vec - exp_avg_vec, base);
Vec exp_avg_sq_vec = Vec::loadu(exp_avg_sq_ptr + d) * Vec(scalar_t(beta2)) +
Vec(scalar_t(exp_avg_sq_grad_coefficient)) * grad_vec * grad_vec;
exp_avg_vec.store(exp_avg_ptr + d);
exp_avg_sq_vec.store(exp_avg_sq_ptr + d);
Vec denom_vec;
if (amsgrad) {
Vec max_exp_avg_sq_vec =
maximum(Vec::loadu(max_exp_avg_sq_ptr + d), exp_avg_sq_vec);
max_exp_avg_sq_vec.store(max_exp_avg_sq_ptr + d);
denom_vec =
(max_exp_avg_sq_vec.sqrt() / Vec(scalar_t(bias_correction2_sqrt))) + Vec(scalar_t(eps));
} else {
denom_vec =
(exp_avg_sq_vec.sqrt() / Vec(scalar_t(bias_correction2_sqrt))) + Vec(scalar_t(eps));
}
param_vec = param_vec + Vec(scalar_t(-step_size)) * exp_avg_vec / denom_vec;
param_vec.store(param_ptr + d);
}
scalar_t grad_val_to_store;
for (; d < size; d++) {
scalar_t grad_val = grad_ptr[d];
if (grad_scale_ptr) {
grad_val = grad_ptr[d] / scalar_t(*grad_scale_ptr);
grad_val_to_store = grad_val;
grad_ptr[d] = grad_val_to_store;
}
if (maximize) grad_val = -grad_val;
if (weight_decay != 0.f){
if constexpr (adam_mode == ADAM_MODE::ORIGINAL) {
grad_val += param_ptr[d] * scalar_t(weight_decay);
} else if constexpr (adam_mode == ADAM_MODE::ADAMW) {
param_ptr[d] = param_ptr[d] * scalar_t(1 - lr * weight_decay);
}
}
// exp_avg.lerp_(grad, 1 - beta1)
auto is_lerp_weight_small = std::abs(scalar_t(exp_avg_grad_coefficient)) < scalar_t(0.5);
if (is_lerp_weight_small) {
exp_avg_ptr[d] = exp_avg_ptr[d] + scalar_t(exp_avg_grad_coefficient) * (grad_val - exp_avg_ptr[d]);
} else {
exp_avg_ptr[d] = grad_val - (grad_val - exp_avg_ptr[d]) * (scalar_t(1) - scalar_t(exp_avg_grad_coefficient));
}
exp_avg_sq_ptr[d] = exp_avg_sq_ptr[d] * scalar_t(beta2);
exp_avg_sq_ptr[d] = exp_avg_sq_ptr[d] +
scalar_t(exp_avg_sq_grad_coefficient) * grad_val * grad_val;
scalar_t demon_val;
if (amsgrad) {
max_exp_avg_sq_ptr[d] =
std::max(max_exp_avg_sq_ptr[d], exp_avg_sq_ptr[d]);
demon_val =
std::sqrt(max_exp_avg_sq_ptr[d]) / scalar_t(bias_correction2_sqrt) + scalar_t(eps);
} else {
demon_val = std::sqrt(exp_avg_sq_ptr[d]) / scalar_t(bias_correction2_sqrt) + scalar_t(eps);
}
param_ptr[d] = param_ptr[d] - scalar_t(step_size) * exp_avg_ptr[d] / demon_val;
}
}
template <typename scalar_t, ADAM_MODE adam_mode>
void adam_fused_step_impl(
const at::Tensor& param,
const at::Tensor& grad,
const at::Tensor& exp_avg,
const at::Tensor& exp_avg_sq,
const at::Tensor& max_exp_avg_sq,
const at::Tensor& state_step,
const double lr,
const double beta1,
const double beta2,
const double weight_decay,
const double eps,
const bool amsgrad,
const bool maximize,
const float* grad_scale_ptr) {
using opmath_t = at::opmath_type<scalar_t>;
double step = state_step.item<float>();
scalar_t* param_data = param.data_ptr<scalar_t>();
scalar_t* exp_avg_data = exp_avg.data_ptr<scalar_t>();
scalar_t* exp_avg_sq_data = exp_avg_sq.data_ptr<scalar_t>();
scalar_t* max_exp_avg_sq_data = amsgrad ? max_exp_avg_sq.data_ptr<scalar_t>() : nullptr;
scalar_t* grad_data = grad.data_ptr<scalar_t>();
// need to use double here to align with non-fused adam
double bias_correction1 = 1 - std::pow(beta1, step);
double bias_correction2 = 1 - std::pow(beta2, step);
double exp_avg_grad_coefficient = 1 - beta1;
double exp_avg_sq_grad_coefficient = 1 - beta2;
double bias_correction2_sqrt = std::sqrt(bias_correction2);
constexpr size_t cache_line_size = 64;
constexpr int64_t cache_line_aligned_task_unit = cache_line_size / sizeof(scalar_t);
size_t num_units = divup(param.numel(), cache_line_aligned_task_unit);
auto adam_fn = [&](int64_t begin, int64_t end) {
// local pointers
begin *= cache_line_aligned_task_unit;
end = std::min(end * cache_line_aligned_task_unit, param.numel());
scalar_t* param_ptr = param_data + begin;
scalar_t* exp_avg_ptr = exp_avg_data + begin;
scalar_t* exp_avg_sq_ptr = exp_avg_sq_data + begin;
scalar_t* grad_ptr = grad_data + begin;
scalar_t* max_exp_avg_sq_ptr = amsgrad ? max_exp_avg_sq_data + begin : nullptr;
const int64_t size = end - begin;
adam_math<scalar_t, opmath_t, adam_mode>(
param_ptr,
exp_avg_ptr,
exp_avg_sq_ptr,
grad_ptr,
max_exp_avg_sq_ptr,
lr,
bias_correction1,
bias_correction2,
exp_avg_grad_coefficient,
exp_avg_sq_grad_coefficient,
bias_correction2_sqrt,
eps,
weight_decay,
beta2,
amsgrad,
maximize,
grad_scale_ptr,
size
);
};
at::parallel_for(
0, num_units, 0, adam_fn);
}
void fused_adam_kernel(
const at::Tensor& param,
const at::Tensor& grad,
const at::Tensor& exp_avg,
const at::Tensor& exp_avg_sq,
const at::Tensor& max_exp_avg_sq,
const at::Tensor& state_step,
const double lr,
const double beta1,
const double beta2,
const double weight_decay,
const double eps,
const bool amsgrad,
const bool maximize,
const float* grad_scale_ptr,
const ADAM_MODE adam_mode
) {
Tensor grad_contiguous = grad.contiguous();
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, param.scalar_type(), "fused_adam_kernel", [&] {
if(adam_mode == ADAM_MODE::ORIGINAL){
adam_fused_step_impl<scalar_t, ADAM_MODE::ORIGINAL>(param, grad, exp_avg, exp_avg_sq, max_exp_avg_sq, state_step, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale_ptr);
} else {
adam_fused_step_impl<scalar_t, ADAM_MODE::ADAMW>(param, grad, exp_avg, exp_avg_sq, max_exp_avg_sq, state_step, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale_ptr);
}
});
}
}
REGISTER_DISPATCH(fused_adam_stub, &fused_adam_kernel);
} // namespace at::native