Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Codegen][LLVMGPU] Correctness issue with softmax due to TileDispatchUsingForall failing to fuse #19189

Open
qedawkins opened this issue Nov 18, 2024 · 0 comments
Labels
bug 🐞 Something isn't working codegen/rocm ROCm code generation compiler backend (HIP/HSA)

Comments

@qedawkins
Copy link
Contributor

The following dispatch produces incorrect results due to a silent failure to distribute all ops to workgroups.

#executable_target_rocm_hsaco_fb = #hal.executable.target<"rocm", "rocm-hsaco-fb", {abi = "hip", iree.gpu.target = #iree_gpu.target<arch = "gfx1100", features = "", wgp = <compute =  fp64|fp32|fp16|int64|int32|int16|int8, storage =  b64|b32|b16|b8, subgroup =  shuffle|arithmetic, dot =  dp4xi8toi32, mma = [<WMMA_F32_16x16x16_F16>, <WMMA_F16_16x16x16_F16>, <WMMA_I32_16x16x16_I8>, <WMMA_I32_16x16x16_I8>, <WMMA_I32_16x16x16_I8>], subgroup_size_choices = [32, 64], max_workgroup_sizes = [1024, 1024, 1024], max_thread_count_per_workgroup = 1024, max_workgroup_memory_bytes = 65536, max_workgroup_counts = [2147483647, 2147483647, 2147483647], max_load_instruction_bits = 128, simds_per_wgp = 4, vgpr_space_bits = 8192>>, ukernels = "none"}>
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1)>
#pipeline_layout = #hal.pipeline.layout<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>
#translation = #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [32, 1, 1] subgroup_size = 32>
module {
  hal.executable public @torch_jit$async_dispatch_9 {
    hal.executable.variant public @rocm_hsaco_fb target(#executable_target_rocm_hsaco_fb) {
      hal.executable.export public @torch_jit$async_dispatch_9_softmax_12x197x197xf32_dispatch_tensor_store ordinal(0) layout(#pipeline_layout) {
      ^bb0(%arg0: !hal.device):
        %x, %y, %z = flow.dispatch.workgroup_count_from_slice 
        hal.return %x, %y, %z : index, index, index
      }
      builtin.module {
        func.func @torch_jit$async_dispatch_9_softmax_12x197x197xf32_dispatch_tensor_store() attributes {translation_info = #translation} {
          %cst = arith.constant 0.000000e+00 : f32
          %cst_0 = arith.constant -3.40282347E+38 : f32
          %0 = hal.interface.constant.load layout(#pipeline_layout) ordinal(0) : i32
          %1 = hal.interface.constant.load layout(#pipeline_layout) ordinal(1) : i32
          %2 = arith.index_castui %0 : i32 to index
          %3 = arith.index_castui %1 : i32 to index
          %4:2 = util.assume.int 
              %2[<umin = 4841472, umax = 4841472, udiv = 4841472>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>, <umin = 5446656, umax = 5446656, udiv = 5446656>], 
              %3[<umin = 0, umax = 0>, <umin = 1210368, umax = 1210368, udiv = 1210368>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>, <umin = 605184, umax = 605184, udiv = 605184>]
            : index, index
          %5 = hal.interface.binding.subspan layout(#pipeline_layout) binding(0) alignment(64) offset(%4#0) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<12x197x197xf32>>
          %6 = hal.interface.binding.subspan layout(#pipeline_layout) binding(1) alignment(64) offset(%4#1) flags(Indirect) : !flow.dispatch.tensor<writeonly:tensor<12x197x197xf32>>
          %7 = flow.dispatch.tensor.load %5, offsets = [0, 0, 0], sizes = [12, 197, 197], strides = [1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<12x197x197xf32>> -> tensor<12x197x197xf32>
          %8 = tensor.empty() : tensor<12x197x197xf32>
          %9 = tensor.empty() : tensor<12x197xf32>
          %10 = linalg.fill ins(%cst_0 : f32) outs(%9 : tensor<12x197xf32>) -> tensor<12x197xf32>
          %11 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%7 : tensor<12x197x197xf32>) outs(%10 : tensor<12x197xf32>) {
          ^bb0(%in: f32, %out: f32):
            %15 = arith.maxnumf %in, %out : f32
            linalg.yield %15 : f32
          } -> tensor<12x197xf32>
          %12 = linalg.fill ins(%cst : f32) outs(%9 : tensor<12x197xf32>) -> tensor<12x197xf32>
          %13 = linalg.generic {indexing_maps = [#map, #map1, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%7, %11 : tensor<12x197x197xf32>, tensor<12x197xf32>) outs(%12 : tensor<12x197xf32>) attrs =  {lowering_config = #iree_gpu.lowering_config<{reduction = [0, 0, 1], thread = [1, 1, 0], workgroup = [4, 8, 0]}>} {
          ^bb0(%in: f32, %in_1: f32, %out: f32):
            %15 = arith.subf %in, %in_1 : f32
            %16 = math.exp %15 : f32
            %17 = arith.addf %16, %out : f32
            linalg.yield %17 : f32
          } -> tensor<12x197xf32>
          %14:2 = linalg.generic {indexing_maps = [#map, #map1, #map1, #map, #map], iterator_types = ["parallel", "parallel", "parallel"]} ins(%7, %11, %13 : tensor<12x197x197xf32>, tensor<12x197xf32>, tensor<12x197xf32>) outs(%8, %8 : tensor<12x197x197xf32>, tensor<12x197x197xf32>) {
          ^bb0(%in: f32, %in_1: f32, %in_2: f32, %out: f32, %out_3: f32):
            %15 = arith.subf %in, %in_1 : f32
            %16 = math.exp %15 : f32
            %17 = arith.divf %16, %in_2 : f32
            linalg.yield %16, %17 : f32, f32
          } -> (tensor<12x197x197xf32>, tensor<12x197x197xf32>)
          flow.dispatch.tensor.store %14#1, %6, offsets = [0, 0, 0], sizes = [12, 197, 197], strides = [1, 1, 1] : tensor<12x197x197xf32> -> !flow.dispatch.tensor<writeonly:tensor<12x197x197xf32>>
          return
        }
      }
    }
  }
}
@qedawkins qedawkins added bug 🐞 Something isn't working codegen/rocm ROCm code generation compiler backend (HIP/HSA) labels Nov 18, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug 🐞 Something isn't working codegen/rocm ROCm code generation compiler backend (HIP/HSA)
Projects
None yet
Development

No branches or pull requests

1 participant