forked from ssnl/dataset-distillation
-
Notifications
You must be signed in to change notification settings - Fork 6
/
base_options.py
573 lines (496 loc) · 28.5 KB
/
base_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import argparse
import os
import sys
import torch
import datasets
import utils
import yaml
import time
import math
import numpy as np
import random
import fcntl
import atexit
import logging
import torch.distributed as dist
from contextlib import contextmanager
from torchtext import data
class State(object):
class UniqueNamespace(argparse.Namespace):
def __init__(self, requires_unique=True):
self.__requires_unique = requires_unique
self.__set_value = {}
def requires_unique(self):
return self.__requires_unique
def mark_set(self, name, value):
if self.__requires_unique and name in self.__set_value:
raise argparse.ArgumentTypeError(
"'{}' appears several times: {}, {}.".format(
name, self.__set_value[name], value))
self.__set_value[name] = value
__inited = False
def __init__(self, opt=None):
if opt is None:
self.opt = UniqueNamespace()
else:
if isinstance(opt, argparse.Namespace):
opt = vars(opt)
self.opt = argparse.Namespace(**opt)
self.extras = {}
self.__inited = True
self._output_flag = True
def __setattr__(self, k, v):
if not self.__inited:
return super(State, self).__setattr__(k, v)
else:
self.extras[k] = v
def __getattr__(self, k):
if k in self.extras:
return self.extras[k]
elif k in self.opt:
return getattr(self.opt, k)
raise AttributeError(k)
def copy(self):
return argparse.Namespace(**self.merge())
def get_output_flag(self):
return self._output_flag
@contextmanager
def pretend(self, **kwargs):
saved = {}
for key, val in kwargs.items():
if key in self.extras:
saved[key] = self.extras[key]
setattr(self, key, val)
yield
for key, val in kwargs.items():
self.pop(key)
if key in saved:
self.extras[key] = saved[key]
def set_output_flag(self, val):
self._output_flag = val
def pop(self, k, default=None):
return self.extras.pop(k, default)
def clear(self):
self.extras.clear()
# returns a single dict containing both opt and extras
def merge(self, public_only=False):
vs = vars(self.opt).copy()
vs.update(self.extras)
if public_only:
for k in tuple(vs.keys()):
if k.startswith('_'):
vs.pop(k)
return vs
def get_base_directory(self):
vs = self.merge()
opt = argparse.Namespace(**vs)
if opt.expr_name_format is not None:
assert len(self.expr_name_format) > 0
dirs = [fmt.format(**vs) for fmt in opt.expr_name_format]
else:
if opt.train_nets_type != 'loaded':
train_nets_str = '{},{}'.format(opt.init, opt.init_param)
else:
train_nets_str = 'loaded,{}'.format(opt.n_nets)
name = 'arch({},{})_distillLR{}_E({},{},{})_lr{}_B{}x{}x{}'.format(
opt.arch, train_nets_str, str(opt.distill_lr),
opt.epochs, opt.decay_epochs, str(opt.decay_factor), str(opt.lr),
opt.distilled_images_per_class_per_step, opt.distill_steps, opt.distill_epochs)
if opt.sample_n_nets > 1:
name += '_{}nets'.format(opt.sample_n_nets)
name += '_train({})'.format(opt.train_nets_type)
if opt.dropout:
name += '_dropout'
dirs = [opt.mode, opt.dataset, name]
return os.path.join(opt.results_dir, *dirs)
def get_load_directory(self):
return self.get_base_directory()
def get_save_directory(self):
base_dir = self.get_base_directory()
if self.phase != 'train':
base_dir = os.path.join(base_dir, 'test')
subdir = self.get_test_subdirectory()
if subdir is not None and subdir != '':
base_dir = os.path.join(base_dir, subdir)
return base_dir
def get_test_subdirectory(self):
if self.test_name_format is not None:
assert len(self.test_name_format) > 0
vs = self.merge()
return self.test_name_format.format(**vs)
else:
return 'nRun{}_nNet{}_nEpoch{}_image_{}_lr_{}{}'.format(
self.test_n_runs, self.test_n_nets, self.test_distill_epochs,
self.test_distilled_images, self.test_distilled_lrs[0],
'' if len(self.test_distilled_lrs) == 1 else '({})'.format('_'.join(self.test_distilled_lrs[1:])))
def get_model_dir(self):
vs = vars(self.opt).copy()
vs.update(self.extras)
opt = argparse.Namespace(**vs)
model_dir = opt.model_dir
arch = opt.arch
if opt.mode == 'distill_adapt':
dataset = opt.source_dataset
else:
dataset = opt.dataset
if self.model_subdir_format is not None and self.model_subdir_format != '':
subdir = self.model_subdir_format.format(**vs)
else:
subdir = os.path.join('{:s}_{:s}_{:s}_{}'.format(dataset, arch, opt.init, opt.init_param))
return os.path.join(model_dir, subdir, opt.phase)
class BaseOptions(object):
def __init__(self):
# argparse utils
def comp(type, op, ref):
op = getattr(type, '__{}__'.format(op))
def check(value):
ivalue = type(value)
if not op(ivalue, ref):
raise argparse.ArgumentTypeError("expected value {} {}, but got {}".format(op, ref, value))
return ivalue
return check
def int_gt(i):
return comp(int, 'gt', i)
def float_gt(i):
return comp(float, 'gt', i)
pos_int = int_gt(0)
nonneg_int = int_gt(-1)
pos_float = float_gt(0)
def get_unique_action_cls(actual_action_cls):
class UniqueSetAttrAction(argparse.Action):
def __init__(self, *args, **kwargs):
self.subaction = actual_action_cls(*args, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
if isinstance(namespace, State.UniqueNamespace):
requires_unique = namespace.requires_unique()
else:
requires_unique = False
if requires_unique:
namespace.mark_set(self.subaction.dest, values)
self.subaction(parser, namespace, values, option_string)
def __getattr__(self, name):
return getattr(self.subaction, name)
return UniqueSetAttrAction
self.parser = parser = argparse.ArgumentParser(description='PyTorch Dataset Distillation')
action_registry = parser._registries['action']
for name, action_cls in action_registry.items():
action_registry[name] = get_unique_action_cls(action_cls)
parser.add_argument('--batch_size', type=pos_int, default=1024,
help='input batch size for training (default: 1024)')
parser.add_argument('--test_batch_size', type=pos_int, default=1024,
help='input batch size for testing (default: 1024)')
parser.add_argument('--test_niter', type=pos_int, default=1,
help='max number of batches to test (default: 1)')
parser.add_argument('--epochs', type=pos_int, default=400, metavar='N',
help='number of total epochs to train (default: 400)')
parser.add_argument('--decay_epochs', type=pos_int, default=40, metavar='N',
help='period of weight decay (default: 40)')
parser.add_argument('--decay_factor', type=pos_float, default=0.5, metavar='N',
help='weight decay multiplicative factor (default: 0.1)')
parser.add_argument('--lr', type=pos_float, default=0.01, metavar='LR',
help='learning rate used to actually learn stuff (default: 0.01)')
parser.add_argument('--init', type=str, default='xavier',
help='network initialization [normal|xavier|kaiming|orthogonal|zero|default]')
parser.add_argument('--init_param', type=float, default=1.,
help='network initialization param: gain, std, etc.')
parser.add_argument('--base_seed', type=int, default=1, metavar='S',
help='base random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--checkpoint_interval', type=int, default=10, metavar='N',
help='checkpoint interval (epoch)')
parser.add_argument('--dataset', type=str, default='MNIST',
help='dataset: MNIST | Cifar10 | PASCAL_VOC | CUB200')
parser.add_argument('--source_dataset', type=str, default=None,
help='dataset: MNIST | Cifar10 | PASCAL_VOC | CUB200')
parser.add_argument('--dataset_root', type=str, default=None,
help='dataset root')
parser.add_argument('--results_dir', type=str, default='./results/',
help='results directory')
parser.add_argument('--arch', type=str, default='LeNet',
help='architecture: LeNet | AlexNet | etc.')
parser.add_argument('--mode', type=str, default='distill_basic',
help='mode: train | distill_basic | distill_attack | distill_adapt ')
parser.add_argument('--distill_lr', type=float, default=0.02,
help='learning rate to perform GD with distilled images PER STEP (default: 0.02)')
parser.add_argument('--model_dir', type=str, default='./models/',
help='directory storing trained models')
parser.add_argument('--model_subdir_format', type=str, default=None,
help='directory storing trained models')
parser.add_argument('--train_nets_type', type=str, default='unknown_init',
help='[ unknown_init | known_init | loaded ]') # add things like P(reset) = 0.7?
parser.add_argument('--test_nets_type', type=str, default='unknown_init',
help='[ unknown_init | same_as_train | loaded ]')
parser.add_argument('--dropout', action='store_true',
help='if set, use dropout')
parser.add_argument('--distilled_images_per_class_per_step', type=pos_int, default=1,
help='use #batch_size distilled images for each class in each step')
parser.add_argument('--distill_steps', type=pos_int, default=10,
help='Iterative distillation, use #num_steps * #batch_size * #classes distilled images. '
'See also --distill_epochs. The total number '
'of steps is distill_steps * distill_epochs.')
parser.add_argument('--distill_epochs', type=pos_int, default=3,
help='how many times to repeat all steps 1, 2, 3, 1, 2, 3, ...')
parser.add_argument('--n_nets', type=int, default=1,
help='# random nets')
parser.add_argument('--sample_n_nets', type=pos_int, default=None,
help='sample # nets for each iteration. Default: equal to n_nets')
parser.add_argument('--device_id', type=comp(int, 'ge', -1), default=0, help='device id, -1 is cpu')
parser.add_argument('--image_dpi', type=pos_int, default=80,
help='dpi for visual image generation')
parser.add_argument('--attack_class', type=nonneg_int, default=0,
help='when mode is distill_attack, the objective is to predict this class as target_class')
parser.add_argument('--target_class', type=nonneg_int, default=1,
help='when mode is distill_attack, the objective is to predict forget class as this class')
parser.add_argument('--expr_name_format', nargs='+', default=None, type=str,
help='expriment save dir name format. multiple values means nested folders')
parser.add_argument('--phase', type=str, default='train',
help='phase')
parser.add_argument('--test_distill_epochs', nargs='?', type=pos_int, default=None,
help='IN TEST, how many times to repeat all steps 1, 2, 3, 1, 2, 3, ...'
'Defaults to distill_epochs.')
parser.add_argument('--test_n_runs', type=pos_int, default=1,
help='do num test (no training), each test generates new distilled image, label, and lr')
parser.add_argument('--test_n_nets', type=pos_int, default=1,
help='# reset model in test to get average performance, useful with unknown init')
parser.add_argument('--test_distilled_images', default='loaded', type=str,
help='which distilled images to test [ loaded | random_train | kmeans_train ]')
parser.add_argument('--test_distilled_lrs', default=['loaded'], nargs='+', type=str,
help='which distilled lrs to test [ loaded | fix [lr] | nearest_neighbor [k] [p] ]')
parser.add_argument('--test_optimize_n_runs', default=None, type=pos_int,
help='if set, evaluate test_optimize_n_runs sets of test images, label and lr on '
'test_optimize_n_nets training networks, and pick the best test_n_runs sets.'
'Default: None.')
parser.add_argument('--test_optimize_n_nets', default=20, type=pos_int,
help='number of networks used to optimize data. See doc for test_optimize_n_runs.')
parser.add_argument('--num_workers', type=nonneg_int, default=8,
help='number of data loader workers')
parser.add_argument('--no_log', action='store_true',
help='if set, will not log into file')
parser.add_argument('--log_level', type=str, default='INFO',
help='logging level, e.g., DEBUG, INFO, WARNING, ERROR, CRITICAL')
parser.add_argument('--test_name_format', nargs='+', type=str, default=None,
help='test save subdir name format. multiple values means nested folders')
parser.add_argument('--world_size', nargs='?', type=comp(int, 'ge', 1), default=1,
help='if > 1, word size used for distributed training in reverse mode with NCCL. '
'This will read an environ variable representing the process RANK, and several '
'others needed to initialize the process group, which can '
'be either MASTER_PORT & MASTER_ADDR, or INIT_FILE. '
'Then it stores the values in state as "distributed_master_addr", '
'"distributed_master_port", etc. Only rank 0 process writes checkpoints. ')
parser.add_argument('--static_labels', type=int, default=0, help='0 for fixed labels during training, 1 for them to be learned as well.')
parser.add_argument('--random_init_labels', type=str, default='', help=' "" for user-set labels init, other strings for special inits.')
parser.add_argument('--num_distill_classes', type=int, default=None, help='Number of distill samples per step (can be less than number of classes.')
parser.add_argument('--init_labels', type=int, nargs="*", default=None, help='If random_init_labels is "", use this to set initial values of distill labels.')
parser.add_argument('--textdata', type=bool, default=False, help='Is the dataset text-based?')
parser.add_argument('--ntoken', type=int, default=251639, help='Number of possible unique words for text data')
parser.add_argument('--ninp', type=int, default=50, help='Embedding size for text data')
parser.add_argument('--maxlen', type=int, default=400, help='Max sentence length for text data')
parser.add_argument('--learnable_embedding', type=bool, default=False, help='Should text embedding be learnable?')
parser.add_argument('--reproduction_test', type=bool, default=False, help='Use original loss function instead of custom one?')
parser.add_argument('--label_softmax', type=bool, default=False, help='Should softmax be applied to distillation labels in loss function?')
parser.add_argument('--visualize', type=bool, default=True, help='Visualize distilled data')
parser.add_argument('--mult_label_scaling', type=float, default = 1, help = "Multiplicative scaling for label initialisations")
parser.add_argument('--add_label_scaling', type=float, default = 0, help = "Additive scaling for label initialisations")
parser.add_argument('--add_first', type=bool, default=True, help="Perform add scaling before mult scaling for label inits?")
parser.add_argument('--dist_metric', type=str, default='MSE', help="One of MSE | NRMSE | SSIM, only used with AIBD and CNDB")
parser.add_argument('--invert_dist', type=bool, default=False, help="Should distance for label init be reversed? Only used with AIDB and CNDB")
parser.add_argument('--freeze_data', type=bool, default=False, help="Should only labels and lr be learned (freeze images/sentences)?")
def get_dummy_state(self, *cmdargs, yaml_file=None, **opt_pairs):
if yaml_file is None:
# Use default Namespace (not UniqueNamespace) because dummy state may
# want to overwrite things using `cmdargs`
opt = self.parser.parse_args(args=list(cmdargs), namespace=argparse.Namespace())
else:
with open(yaml_file, 'r') as f:
opt = yaml.load(f)
state = State(opt)
valid_keys = set(state.merge().keys())
for k in opt_pairs:
# TODO: check against argparse instead
assert k in valid_keys, "'{}' is not a valid key".format(k)
state.extras.update(opt_pairs)
return self.set_state(state, dummy=True)
def get_state(self):
if hasattr(self, 'state'):
return self.state
logging.getLogger().setLevel(logging.DEBUG)
self.opt, unknowns = self.parser.parse_known_args(namespace=State.UniqueNamespace())
assert len(unknowns) == 0, 'Unexpected args: {}'.format(unknowns)
self.state = State(self.opt)
return self.set_state(self.state)
def set_state(self, state, dummy=False):
if state.opt.sample_n_nets is None:
state.opt.sample_n_nets = state.opt.n_nets
base_dir = state.get_base_directory()
save_dir = state.get_save_directory()
state.opt.start_time = time.strftime(r"%Y-%m-%d %H:%M:%S")
# Usually only rank 0 can write to file (except logging, training many
# nets, etc.) so let's set that flag before everything
state.opt.distributed = state.world_size > 1
if state.distributed:
# read from os.environ
def set_val_from_environ(key, save_obj, ty=str, fmt="distributed_{}"):
if key not in os.environ:
raise ValueError("expected environment variable {} to be set when using distributed".format(key))
setattr(save_obj, fmt.format(key.lower()), ty(os.environ[key]))
set_val_from_environ("RANK", state, int, "world_rank")
state.opt.distributed_file_init = 'INIT_FILE' in os.environ
if state.opt.distributed_file_init:
def absolute_path(val):
return os.path.abspath(os.path.expanduser(str(val)))
set_val_from_environ("INIT_FILE", state.opt, ty=absolute_path)
else:
os.environ['WORLD_SIZE'] = str(state.world_size)
set_val_from_environ("MASTER_ADDR", state.opt)
set_val_from_environ("MASTER_PORT", state.opt, int)
state.set_output_flag(state.world_rank == 0)
else:
state.world_rank = 0
state.set_output_flag(not dummy)
if not dummy:
utils.mkdir(save_dir)
# First thing: set logging config:
if not state.opt.no_log:
log_filename = 'output'
if state.distributed:
log_filename += '_rank{:02}'.format(state.world_rank)
log_filename += '.log'
state.opt.log_file = os.path.join(save_dir, log_filename)
else:
state.opt.log_file = None
state.opt.log_level = state.opt.log_level.upper()
if state.distributed:
logging_prefix = 'rank {:02d} / {:02d} - '.format(state.world_rank, state.world_size)
else:
logging_prefix = ''
utils.logging.configure(state.opt.log_file, getattr(logging, state.opt.log_level),
prefix=logging_prefix)
logging.info("=" * 40 + " " + state.opt.start_time + " " + "=" * 40)
logging.info('Base directory is {}'.format(base_dir))
if state.phase == 'test' and not os.path.isdir(base_dir):
logging.warning("Base directory doesn't exist")
_, state.opt.dataset_root, state.opt.nc, state.opt.input_size, state.opt.num_classes, \
state.opt.dataset_normalization, state.opt.dataset_labels = datasets.get_info(state)
if not state.opt.num_distill_classes:
state.opt.num_distill_classes = state.opt.num_classes
if not state.opt.init_labels:
state.opt.init_labels = list(range(state.opt.num_distill_classes))
# Write yaml
yaml_str = yaml.dump(state.merge(public_only=True), default_flow_style=False, indent=4)
logging.info("Options:\n\t" + yaml_str.replace("\n", "\n\t"))
if state.get_output_flag():
yaml_name = os.path.join(save_dir, 'opt.yaml')
if os.path.isfile(yaml_name):
old_opt_dir = os.path.join(save_dir, 'old_opts')
utils.mkdir(old_opt_dir)
with open(yaml_name, 'r') as f:
# ignore unknown ctors
yaml.add_multi_constructor('', lambda loader, suffix, node: None)
old_yaml = yaml.load(f) # this is a dict
old_yaml_time = old_yaml.get('start_time', 'unknown_time')
for c in ':-':
old_yaml_time = old_yaml_time.replace(c, '_')
old_yaml_time = old_yaml_time.replace(' ', '__')
old_opt_new_name = os.path.join(old_opt_dir, 'opt_{}.yaml'.format(old_yaml_time))
try:
os.rename(yaml_name, old_opt_new_name)
logging.warning('{} already exists, moved to {}'.format(yaml_name, old_opt_new_name))
except FileNotFoundError:
logging.warning((
'{} already exists, tried to move to {}, but failed, '
'possibly due to other process having already done it'
).format(yaml_name, old_opt_new_name))
pass
with open(yaml_name, 'w') as f:
f.write(yaml_str)
# FROM HERE, we have saved options into yaml,
# can start assigning objects to opt, and
# modify the values for process-specific things
def assert_divided_by_world_size(key, strict=True):
val = getattr(state, key)
if strict:
assert val % state.world_size == 0, \
"expected {}={} to be divisible by the world size={}".format(key, val, state.world_size)
val = val // state.world_size
else:
val = math.ceil(val / state.world_size)
setattr(state, 'local_{}'.format(key), val)
assert_divided_by_world_size('n_nets')
if state.mode != 'train':
assert_divided_by_world_size('test_n_nets')
assert_divided_by_world_size('sample_n_nets')
if state.device_id < 0:
state.opt.device = torch.device("cpu")
else:
torch.cuda.set_device(state.device_id)
state.opt.device = torch.device("cuda:{}".format(state.device_id))
if not dummy:
if state.device.type == 'cuda' and torch.backends.cudnn.enabled:
torch.backends.cudnn.benchmark = True
seed = state.base_seed
if state.distributed:
seed += state.world_rank
logging.info("In distributed mode, use arg.seed + rank as seed: {}".format(seed))
state.opt.seed = seed
# torch.manual_seed will seed ALL GPUs.
torch.random.default_generator.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if not dummy and state.distributed:
logging.info('Initializing distributed process group...')
if state.distributed_file_init:
dist.init_process_group("NCCL",
init_method="file://{}".format(state.distributed_init_file),
rank=state.world_rank,
world_size=state.world_size)
else:
dist.init_process_group("NCCL", init_method="env://")
utils.distributed.barrier()
logging.info('done!')
# Check command args consistency across ranks
# Use a raw parsed dict because we assigned a bunch of things already
# so this doesn't include things like seed (which can be rank-specific),
# but includes base_seed.
opt_dict = vars(self.parser.parse_args())
opt_dict.pop('device_id') # don't compare this
bytes = yaml.dump(opt_dict, encoding='utf-8')
bytes_storage = torch.ByteStorage.from_buffer(bytes)
opt_tensor = torch.tensor((), dtype=torch.uint8).set_(bytes_storage).to(state.opt.device)
for other, ts in enumerate(utils.distributed.all_gather_coalesced([opt_tensor])):
other_t = ts[0]
if not torch.equal(other_t, opt_tensor):
other_str = bytearray(other_t.cpu().storage().tolist()).decode(encoding="utf-8")
this_str = bytes.decode(encoding="utf-8")
raise ValueError(
"Rank {} opt is different from rank {}:\n".format(state.world_rank, other) +
utils.diff_str(this_str, other_str))
# in case of downloading, to avoid race, let rank 0 download.
if state.world_rank == 0:
train_dataset = datasets.get_dataset(state, 'train')
test_dataset = datasets.get_dataset(state, 'test')
if not dummy and state.distributed:
utils.distributed.barrier()
if state.world_rank != 0:
train_dataset = datasets.get_dataset(state, 'train')
test_dataset = datasets.get_dataset(state, 'test')
if state.opt.textdata:
state.opt.train_loader = data.Iterator(
train_dataset, batch_size=state.batch_size, device=state.device, repeat=False, sort_key=lambda x: len(x.train_dataset), shuffle=True)
state.opt.test_loader = data.Iterator(
test_dataset, batch_size=state.test_batch_size, device=state.device, repeat=False, sort_key=lambda x: len(x.test_dataset), shuffle=True)
else:
state.opt.train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=state.batch_size,
num_workers=state.num_workers, pin_memory=True, shuffle=True)
state.opt.test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=state.test_batch_size,
num_workers=state.num_workers, pin_memory=True, shuffle=True)
if not dummy:
logging.info('train dataset size:\t{}'.format(len(train_dataset)))
logging.info('test dataset size: \t{}'.format(len(test_dataset)))
logging.info('datasets built!')
state.vis_queue = utils.multiprocessing.FixSizeProcessQueue(2)
return state
options = BaseOptions()