-
Notifications
You must be signed in to change notification settings - Fork 8
/
dashboard.py
737 lines (579 loc) · 20.4 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
import ibis
import plotly.express as px
from shiny import reactive, render
from shinyswatch import theme
from shinywidgets import render_plotly
from shiny.express import input, ui
from datetime import datetime, timedelta
import ibis_analytics.plots as plots
import ibis_analytics.metrics as metrics
from ibis_analytics.tables import (
pulls_t,
stars_t,
forks_t,
issues_t,
commits_t,
downloads_t,
docs_t,
zulip_members_t,
zulip_messages_t,
)
from ibis_analytics.config import GH_REPOS, PYPI_PACKAGES
gh_repos = [gh_repo.split("/")[1] for gh_repo in GH_REPOS]
# dark themes
px.defaults.template = "plotly_dark"
ui.page_opts(theme=theme.darkly)
# page options
ui.page_opts(
title="Ibis analytics",
fillable=False,
full_width=True,
)
# add page title and sidebar
with ui.sidebar(open="desktop"):
ui.input_date_range(
"date_range",
"Date range",
start=(datetime.now() - timedelta(days=28)),
end=datetime.now() + timedelta(days=1),
)
ui.input_action_button("last_7d", "Last 7 days")
ui.input_action_button("last_14d", "Last 14 days")
ui.input_action_button("last_28d", "Last 28 days")
ui.input_action_button("last_91d", "Last 91 days")
ui.input_action_button("last_182d", "Last 182 days")
ui.input_action_button("last_365d", "Last 365 days")
ui.input_action_button("last_730d", "Last 730 days")
ui.input_action_button("last_all", "All available data")
with ui.value_box(full_screen=True):
"Total days in range"
@render.express
def total_days():
start_date, end_date = date_range()
days = (end_date - start_date).days - 1 # YOLO
f"{days:,}"
with ui.nav_panel("GitHub metrics"):
with ui.layout_columns():
ui.input_select(
"repo_name",
"Repo:",
gh_repos,
selected=gh_repos[0],
)
with ui.layout_columns():
with ui.value_box():
"Total stars"
@render.express
def total_stars():
f"{metrics.total(stars_data()):,}"
with ui.value_box():
"Total pulls"
@render.express
def total_pulls():
f"{metrics.total(pulls_data()):,}"
with ui.value_box():
"Total issues"
@render.express
def total_issues():
f"{metrics.total(issues_data()):,}"
with ui.value_box():
"Total forks"
@render.express
def total_forks():
f"{metrics.total(forks_data()):,}"
with ui.value_box():
"Total commits"
@render.express
def total_commits():
f"{metrics.total(commits_data()):,}"
with ui.layout_columns():
with ui.card(full_screen=True):
"Total stars"
@render_plotly
def stars_line():
t = stars_data()
c = plots.line(t, x="starred_at", y="total_stars")
return c
with ui.card(full_screen=True):
"Rolling 28d stars"
@render_plotly
def stars_roll():
start_date, end_date = input.date_range()
repo_name = input.repo_name()
t = stars_t
t = t.filter(t["repo_name"] == repo_name)
t = metrics.stars_rolling(t, days=28)
t = t.filter(t["timestamp"] >= start_date, t["timestamp"] <= end_date)
c = plots.line(
t,
x="timestamp",
y="rolling_stars",
)
return c
with ui.card(full_screen=True):
"Stars"
with ui.card_header(class_="d-flex justify-content-between align-items-center"):
with ui.layout_columns():
ui.input_select(
"truncate_by_stars",
"Truncate to:",
["D", "W", "M", "Q", "Y"],
selected="D",
)
ui.input_select(
"group_by_stars",
"Group by:",
[None, "company"],
selected=None,
)
@render_plotly
def stars_flex():
truncate_by = input.truncate_by_stars()
group_by = input.group_by_stars()
t = stars_data().order_by("starred_at")
t = t.mutate(starred_at=t["starred_at"].truncate(truncate_by))
t = t.group_by(["starred_at", group_by] if group_by else "starred_at").agg(
stars=ibis._.count()
)
# this is for plotly legend display reasons
if group_by == "company":
t = t.mutate(company=t["company"][:16])
t = t.order_by("starred_at", ibis.desc("stars"))
c = px.bar(
t,
x="starred_at",
y="stars",
color="company" if group_by else None,
barmode="stack",
)
return c
with ui.nav_panel("PyPI metrics"):
with ui.layout_columns():
ui.input_select(
"package_name",
"Package:",
PYPI_PACKAGES,
selected=PYPI_PACKAGES[0],
)
with ui.layout_columns():
with ui.value_box(full_screen=True):
"Total downloads"
@render.express
def total_downloads():
val = downloads_data()["count"].sum().to_pyarrow().as_py()
f"{val:,}"
with ui.value_box(full_screen=True):
"Total versions"
@render.express
def total_versions():
val = metrics.get_categories(downloads_data(), "version")
f"{len(val):,}"
with ui.card(full_screen=True):
"Downloads by version"
@render.data_frame
def downloads_by_version():
t = downloads_data()
t = (
t.mutate(
version=t["version"].split(".")[0],
)
.filter(~ibis._["version"].startswith("v"))
.group_by("version")
.agg(downloads=ibis._["count"].sum())
.order_by(ibis.desc("downloads"))
)
return render.DataGrid(t.to_polars())
with ui.layout_columns():
with ui.card(full_screen=True):
"Rolling 28d downloads"
@render_plotly
def downloads_roll():
package_name = input.package_name()
t = downloads_t
t = t.filter(t["project"] == package_name)
min_date, max_date = input.date_range()
t = metrics.downloads_rolling(t, days=28)
t = t.filter(
t["timestamp"] >= min_date, t["timestamp"] <= max_date
).order_by("timestamp")
c = px.line(
t,
x="timestamp",
y="rolling_downloads",
)
return c
with ui.card(full_screen=True):
"Rolling 28d downloads by version"
with ui.card_header(
class_="d-flex justify-content-between align-items-center"
):
with ui.layout_columns():
ui.input_select(
"version_style",
"Version style",
["major", "major.minor", "major.minor.patch"],
selected="major",
)
@render_plotly
def downloads_by_version_roll():
package_name = input.package_name()
version_style = input.version_style()
min_date, max_date = input.date_range()
t = downloads_t
t = t.filter(t["project"] == package_name)
t = metrics.downloads_rolling_by_version(
t, version_style=version_style, days=28
)
t = t.filter(
t["timestamp"] >= min_date, t["timestamp"] <= max_date
).order_by("timestamp")
c = px.line(
t,
x="timestamp",
y="rolling_downloads",
color="version",
category_orders={
"version": reversed(
sorted(
t.distinct(on="version")["version"]
.to_pyarrow()
.to_pylist(),
# smartly convert string to float for sorting
# key=lambda x: int(x),
key=lambda x: tuple(map(float, x.split("."))),
)
)
},
)
return c
with ui.card(full_screen=True):
"Downloads"
with ui.card_header(class_="d-flex justify-content-between align-items-center"):
with ui.layout_columns():
ui.input_select(
"group_by_downloads",
"Group by:",
[None, "version", "system", "country_code"],
selected="version",
)
@render_plotly
def downloads_flex():
group_by = input.group_by_downloads()
t = downloads_data()
t = t.mutate(timestamp=t["date"].cast("timestamp"))
t = t.filter(~t["version"].startswith("v"))
t = t.mutate(version=t["version"].split(".")[0])
t = t.group_by(["timestamp", group_by] if group_by else "timestamp").agg(
downloads=ibis._["count"].sum()
)
t = t.order_by("timestamp", ibis.desc("downloads"))
c = px.bar(
t,
x="timestamp",
y="downloads",
color=group_by if group_by else None,
barmode="stack",
category_orders={
"version": reversed(
sorted(
t.distinct(on="version")["version"]
.to_pyarrow()
.to_pylist(),
key=lambda x: int(x),
)
)
}
if group_by == "version"
else None,
)
return c
with ui.nav_panel("Docs metrics"):
with ui.layout_columns():
with ui.value_box(full_screen=True):
"Total docs"
@render.express
def total_docs():
val = docs_t.count().to_pyarrow().as_py()
f"{val:,}"
with ui.layout_columns():
with ui.card(full_screen=True):
"Rolling 28d docs"
@render_plotly
def docs_roll():
t = docs_t
min_date, max_date = input.date_range()
t = metrics.docs_rolling(t, days=28)
t = t.filter(
t["timestamp"] >= min_date, t["timestamp"] <= max_date
).order_by("timestamp")
c = px.line(
t,
x="timestamp",
y="rolling_docs",
)
return c
with ui.card(full_screen=True):
"Rolling 28d docs by path"
@render_plotly
def docs_by_path_roll():
t = docs_t
min_date, max_date = input.date_range()
t = metrics.docs_rolling_by_path(t, days=28)
t = t.filter(
t["timestamp"] >= min_date, t["timestamp"] <= max_date
).order_by("timestamp")
c = px.line(
t,
x="timestamp",
y="rolling_docs",
color="path",
)
# no legend
c.update_layout(showlegend=False)
return c
with ui.card(full_screen=True):
with ui.card(full_screen=True):
with ui.layout_columns():
ui.input_select(
"truncate_to_docs",
"Truncate to:",
["D", "W", "M", "Q", "Y"],
)
ui.input_select(
"group_by_docs",
"Group by:",
[
None,
"path",
"browser",
"system",
"bot",
"referrer",
"location",
"first_visit",
],
selected=None,
)
@render_plotly
def docs_flex():
group_by = input.group_by_docs()
truncate_to = input.truncate_to_docs()
t = docs_data()
t = t.mutate(timestamp=t["timestamp"].truncate(truncate_to))
t = t.group_by(["timestamp", group_by] if group_by else "timestamp").agg(
count=ibis._.count()
)
t = t.order_by("timestamp", ibis.desc("count"))
if group_by in ["path", "referrer"]:
t = t.mutate(**{group_by: t[group_by][:10]})
c = px.bar(
t,
x="timestamp",
y="count",
color=group_by if group_by else None,
barmode="stack",
)
# no legend
# c.update_layout(showlegend=False)
return c
with ui.card(full_screen=True):
"Referrer by path"
with ui.layout_columns():
paths = (
docs_t.group_by("path")
.agg(count=ibis._.count())
.mutate(rank=ibis.row_number().over(order_by=ibis.desc("count")))[
"path"
]
.to_pyarrow()
.to_pylist()
)
ui.input_select(
"docs_path",
"Doc page:",
paths,
selected=paths[0],
)
@render.data_frame
def docs_referrer_table():
path = input.docs_path()
t = docs_data()
t = t.filter(t["path"] == path)
t = t.group_by("referrer").agg(count=ibis._.count())
t = t.order_by(ibis.desc("count"))
return render.DataGrid(t.to_polars())
with ui.nav_panel("Zulip metrics"):
with ui.layout_columns():
with ui.value_box(full_screen=True):
"Total messages"
@render.express
def total_messages():
val = zulip_messages_t.count().to_pyarrow().as_py()
f"{val:,}"
with ui.value_box(full_screen=True):
"Total members"
@render.express
def total_members():
val = zulip_members_t.count().to_pyarrow().as_py()
f"{val:,}"
with ui.card(full_screen=True):
"Members over time"
@render_plotly
def members_line():
t = zulip_members_data()
t = (
t.mutate(timestamp=t["date_joined"].cast("date"))
.group_by("timestamp")
.agg(total_members=ibis._["total_members"].max())
.order_by(ibis.desc("timestamp"))
)
# c = plots.line(t.to_polars(), x="timestamp", y="total_members")
c = px.line(t.to_polars(), x="timestamp", y="total_members")
return c
with ui.card(full_screen=True):
"Messages over time"
@render_plotly
def messages_line():
t = zulip_messages_data()
t = t.mutate(timestamp=t["timestamp"].cast("timestamp"))
c = plots.line(t, x="timestamp", y="total_messages")
return c
# reactive calculations and effects
@reactive.calc
def date_range():
start_date, end_date = input.date_range()
return start_date, end_date
@reactive.calc
def stars_data(stars_t=stars_t):
start_date, end_date = input.date_range()
repo_name = input.repo_name()
t = stars_t.filter(
stars_t["starred_at"] >= start_date, stars_t["starred_at"] <= end_date
).filter(stars_t["repo_name"] == repo_name)
return t
@reactive.calc
def pulls_data(pulls_t=pulls_t):
start_date, end_date = input.date_range()
repo_name = input.repo_name()
t = pulls_t.filter(
pulls_t["created_at"] >= start_date, pulls_t["created_at"] <= end_date
).filter(pulls_t["repo_name"] == repo_name)
return t
@reactive.calc
def forks_data(forks_t=forks_t):
start_date, end_date = input.date_range()
repo_name = input.repo_name()
t = forks_t.filter(
forks_t["created_at"] >= start_date, forks_t["created_at"] <= end_date
).filter(forks_t["repo_name"] == repo_name)
return t
@reactive.calc
def downloads_data(downloads_t=downloads_t):
start_date, end_date = input.date_range()
package_name = input.package_name()
t = (
downloads_t.filter(
downloads_t["date"] >= start_date, downloads_t["date"] <= end_date
)
.filter(downloads_t["project"] == package_name)
.mutate(system=ibis.ifelse(ibis._["system"] == "", "unknown", ibis._["system"]))
)
return t
@reactive.calc
def docs_data(docs_t=docs_t):
start_date, end_date = input.date_range()
t = docs_t.filter(
docs_t["timestamp"] >= start_date, docs_t["timestamp"] <= end_date
)
return t
@reactive.calc
def issues_data(issues_t=issues_t):
start_date, end_date = input.date_range()
repo_name = input.repo_name()
t = issues_t.filter(
issues_t["created_at"] >= start_date, issues_t["created_at"] <= end_date
).filter(issues_t["repo_name"] == repo_name)
return t
@reactive.calc
def commits_data(commits_t=commits_t):
start_date, end_date = input.date_range()
repo_name = input.repo_name()
t = commits_t.filter(
commits_t["committed_date"] >= start_date,
commits_t["committed_date"] <= end_date,
).filter(commits_t["repo_name"] == repo_name)
return t
@reactive.calc
def zulip_messages_data(zulip_messages_t=zulip_messages_t):
start_date, end_date = input.date_range()
t = zulip_messages_t.filter(
zulip_messages_t["timestamp"] >= start_date,
zulip_messages_t["timestamp"] <= end_date,
)
return t
@reactive.calc
def zulip_members_data(zulip_members_t=zulip_members_t):
start_date, end_date = input.date_range()
t = zulip_members_t.filter(
zulip_members_t["date_joined"].cast("date") >= start_date,
zulip_members_t["date_joined"].cast("date") <= end_date,
)
return t
def _update_date_range(days):
start_date = datetime.now() - timedelta(days=days)
end_date = datetime.now() + timedelta(days=1)
ui.update_date_range(
"date_range",
start=start_date.strftime("%Y-%m-%d"),
end=end_date.strftime("%Y-%m-%d"),
)
@reactive.effect
@reactive.event(input.last_7d)
def _():
_update_date_range(days=7)
@reactive.effect
@reactive.event(input.last_14d)
def _():
_update_date_range(days=14)
@reactive.effect
@reactive.event(input.last_28d)
def _():
_update_date_range(days=28)
@reactive.effect
@reactive.event(input.last_91d)
def _():
_update_date_range(days=91)
@reactive.effect
@reactive.event(input.last_182d)
def _():
_update_date_range(days=182)
@reactive.effect
@reactive.event(input.last_365d)
def _():
_update_date_range(days=365)
@reactive.effect
@reactive.event(input.last_730d)
def _():
_update_date_range(days=730)
@reactive.effect
@reactive.event(input.last_all)
def _():
# TODO: pretty hacky
min_all_tables = [
(col, t[col].cast("timestamp").min().to_pyarrow().as_py())
for t in [stars_t, pulls_t, forks_t, issues_t, commits_t, downloads_t]
for col in t.columns
if (
str(t[col].type()).startswith("timestamp")
or str(t[col].type()).startswith("date")
)
# this in particular should be cleaned up in the DAG
and "created_at" not in col
]
min_all_tables = min([x[1] for x in min_all_tables]) - timedelta(days=1)
max_now = datetime.now() + timedelta(days=1)
ui.update_date_range(
"date_range",
start=(min_all_tables).strftime("%Y-%m-%d"),
end=max_now.strftime("%Y-%m-%d"),
)